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I. Introduction

Sincerthere seems to be some confusion about the statistical processes
inherent in stochastic cooling I give derivations of two probability density

distributions that may serve to illuminate the situation.

"In the ideal case the statistical fluctuation sensed survives to the
correction station essentially intact but is smeared out to present a
statistically independent sample by the time of the next pass through the
sensing station. Any physically realizable system must necessarily be a

compromise of these ideal conditions.

I consider two problems: 1) What is the time dependent probability
density distribution of the number of particles in a sample of beam, and
2) What is the time dependent probability density distribution of the
difference of the number of particles on either side of a sample of beam;

with given initial conditions?

II. Unsplit Sample

Consider a sample of a beam containing, on the average, (n)z) particles.
Let )\ be the probability per unit time that any one particle leaves the
sample (due e.g. to momentum spread). We seek the probability, Pm(t), that
m particles are present at time, t, if there are exactly moipresent at time

zero, From elementary considerations,

1)
2)

Random.

The notation ( ) signifies expectation value.
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P (t+8t) =P . (t) A (m) 6t P (t) A(ml) bt + P (£) (I-A((n)+m)5t)

and letting 6t - 0O ,

dp ;
o = Booq Moy + B g A(mtl) - B () + m) ¢H)

This can be solved exactly be introducing the generatiﬁg function
m
QP—IXIZIPmX
and multiplying Eq. 1 by %" and summing we get

§%= (1 - %) {‘h<ﬂ>.cp+ x%‘gb :

Since {(n), m, m > 1 the Central Limit Theorem of statistics says that P
will be very well approximated by the normal distribution (with mean and
. variance a function of time) so it is sufficient for our purposes to deter-

mine only the mean ({m)) and variance ((mZ)-(m)z) of m,

Multiplying Eq. 1 by m and summing over m,

d{m
L =\ (ay - (m))

or

(m) = (n) = e () - m)

Multiplying Eq. 1 by mz and summing over m,

2
LD =y () + () 2y + 1) - 26a®))
whose solution is
@y = (my + (m)? - m e AT
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or
-2\t 2

var (m) = (m) - m e =g .
The time dependent probability density distribution of m is

-%

P (t) = (2n o2

- 'm, 2
o {- sy

IT1I. Split Sample

Consider a sample of beam containing N particles. If there are m
and n particles (initially m and no) on either side of the beam the

sensed transverse beam position is

_ m-n _ m-n

m+n Cbeam N “peam ° i

Let U equal the probability per unit time (due e.g. to betatron oscilla-
tions) that a particle will change sides. Thenjoint iprobability i,
distribution Pm n(t) satisfies

2

m,n _-
it -

dp }
Piett, enpr 2 (BHL) P

T
pii= 1

m+1 ;- in-

vk Pl L, =

{
L y L
)l

]

T

As inmIIJeweiéaldwlateMGnl,hthe@meamﬁdndavdmﬁancefofbm:n.Si&ince»m and n are
A - h -

not statistically independent we have

var(m-n) = var(m) + var(n) - 2 cov(m,n)

or

It

(m™y + (n%y - (my-(a))? - 2(mm) .

var (m~-n)

Multiplying Eq. 2 by n, m, n2, m2, and mn and each time summing over

m, n, we get

-2ut
<m'n>=(mo"no)e B
and, after a.moderate amount of algebra
var(m-n) = N(1 - e-4vt) = gz .

2)




The time dependent probability density distribution of m-n is

IV.

P(t) = (Cm
m-n
Conclusion
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Using the above, zand thezassumption~thatthe initial (t=0) conditions

are normally distributed, tthe ijviterested rredder, wwikh.a little arithmetic

.13 ;
(or computer time),meancedleilaterthe odds” sonithe:success-of a particular

stochastic cooling system.

3)

wazer

»W a0 WE

JL,“ O ﬁ‘\d

‘1»—,1—1

doa,

"For most men ('till by losing rendered sager) witl

Tovd E‘"’V”OLL

w111 backsthelr own“oplnlons with a wager"

=

Dist:

AD Sci.
J. Sanford

Staff

George Gordon, Lord Byron.



