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Abstract

Dynamics of nonlinear oscillations is studied for of a single bunch
above the threshold of microwave instability and for beam-beam
interaction.

1 INTRODUCTION

There are number of observation of substantially non-linear coher-
ent effects.
Some of them

1. Beam-beam blow-up and O-type oscillations,

2. Beam-Ion instability

3. Saturation of single/multi-bunch instabilities,

4. Saw-tooth instability (SLC DR, P. Krejcik et.al.)

5. Relaxation oscillations in the beam interacting with high-Q
resonator (SPEAR, J. Sebek, C. Limborg)

6. Transverse relaxation oscillations (K. Harkey, Argon).

Similar problems exist and were studied in hadron machines

(P.Colstoke).

The 1D saw-tooth instability provide a simple case for study of
these phenomena. It was observed in many laboratories and can
be considered as onset of the microwave instability.

Beam-beam is another well-known nonlinear problem.

These problems are discussed below.
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2 Notations and Haissinski Solution

* Diffusion and radiation damping are described by the Fokker-
Plank equation.

* In a steady-state, solution of the F-P1l is (Haisinskii, 1973)
pu(J) = (]_/ZH)G—HH(JJ’)

* Several minima of SCP at large \ are possible CMI and
Baartman-Dyachkov mechanism (1995) then are important

* In this note we consider relatively small )\, Ug(z) has one
minimum, coherent frequency shift is small.

* In the time-dependent case,

p(J.6.8) = pu(J) + S pul )0, H = Hy(J) + LU 9)e™, (1)

. where
Ua(J,s) = A / ATl o (S $) R (1), A= —2T0 (g
. b . an b] T T b b 27erYa5[2]
P [ dw Z(w) ,
Rm m!\ v, = == ——Unp\J, *: J, .
wl1.7) = =5 [ SEZ RO T w)Cru () 3)
__ @ —imdp iz (J,P)
Cp(J,w) = / 27Te e : (4)

where ©(J, ¢) is particle trajectory in the Haisinskii potential.



3 Fokker-Plank equation. Linear Approxi-
mation
* The Fokker-Plank equation defines azimuthal harmonics p,

* In the linear approximation, all azimuthal modes are indepen-
dent and are the superposition of radial modes

pu(1.5) = i) b Ko (e =2 (5)
/ 4T My (1. TV XN J') = —v X, (J). (6)
M (J,J) = 20 AR (], IV g (J') = 8(J = T ) (wu(J) — @), (7)

* The beam is linearly unstable if at least one of the eigen-values
v has positive imaginary part ', = Im[v] > 7,.

* If ply(J) is monotonic function, the beam stability (apart of
Landau damping) depends on the anharmonicity of the trajectories
and given by the asymmetric part of R,,, [Oide].

* The structure of the modes is

rm(J)

2N = e ==

(8)

where r,,(J) is a smooth function of J.
Mode is localized around the resonance value J,, w(J,) =@ + Q

with the width T',,.



4 Comparison with a nonlinear oscillator

* Above the threshold, mode interaction may become important.

When there are many unstable modes — turbulent regime of
the microwave instability.

* What can be expected when a single unstable mode is domi-
nant?

* Quasi-linear approach (O’Neil, 1965; Yongho Chin, Yokoya,
1984)

Result: Particle Trapping and saturation of the instability.

* Quasi-steady state: Shonfeld (1985), Meller (1986). However,
it is difficult to use in time-domain self-consistent calculations

* Analogy with nonlinear oscillator 4 periodic external pertur-
bation given by the growing mode.

H(J, ¢,5) = Ho(J) + ncos(d — Qs — y), (9)

Q=wy+ A, 7]=§,/%.

* Resonance island exists at arbitrary small amplitudes e.
The width of the resonance depends on ¢/x and can be large

even for small .



4.1 Can we get these results from the Liouville equa-

tion?
Neglect self-consistency. Consider dipole U; = U, = W Je ™5, p
may grow 7 = mel®.
In the linear approximation,
npy(J)VJ Qs
— r/pH( )\/_ C——I,Q.s7 (10)

Pree = (T = J, = iw)

* The linearized equation describes the resonance mode but not
modification of the rest of the phase plane.

* Include now coupling to harmonics py and p49

. . . .oUy .5p .6;02 N
o+ iwgp — ipgUs + 21 8,]1 po — Zﬁj]gUl + ’LE]-Ul =0. (11)

* Equations for py and p; can be solved explicitly.
Introduce f(.J), p1 = nv/Jf.

2 2 2094 2 -
in? & . o m(0f[9]) 0 n*J(8f/9])
YL by a1 gy L
(12)
The first term and the third terms give corrections due to cou-
pling to py and ps.

(J=To=iw)f = g (])+

* For small 7, equation can be solved by iterations.
Corrections are small if (J — J,)? > 7/ J,
i.e. outside of the separatrix.

This suggest that interaction of two modes may be essential.

[
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5 Nonlinear Regime

Keep harmonics m = 0.1, 2.
Expand . )
p1(J. 8) = ply(J)b, X, (J)e =) (13)
p

pa(,8) = ply(J)a, Y, (J)e 2en =) (14)

M, (J,J') = 20 ARy (J, J ) g (J') = 6(J = I ) (wr(J) —@), m=1,2 (15)

/dJ'Ml(J, INX,(J) = —vX,(J), (16)
/dJ’ (L, JVY,(J') = —pY,(J). (17)
The radial amplitudes satisfy equations
by + (iv 4+ va)b, +1 Z by 4 Z dy,sb, =0, (18)
1o o
ap + (20004 vg)a, +4Y g \babs + LZ frots =0, (19)
a,A

%33 gives another set of equations:

dyo + Yodoo = —i(V™* — )P boby — 2i(" = N)Q'yaan,  (20)
fll.)\ + ’YOf/L)\ = ( -0 )FH i’b;t’bo’ + 2( /\,)G/l’ )\,LL 1Qx- (21)

Coefficients P, @), F', and G are constants. For example,

vio!

vo 0 Wy —w—0 0, o
P, = /dJ XX s X X (22)



6 Single Mode

“onsider single unstable radial dipole mode v” = I'm[v] > 0 taking
into account coupling to pg.

b+ (iv +y)b+idb =0, d+yd=—2v"Pb’. (23)
Here P = P}

In the nonlinear regime, d, the momentum of py, modifies the
linear coherent frequency v and can stop and even reverse the sign
of the growth rate.

FP: z =y = 0, stable if v > 740,
FP: A new FP exists and stable if v” > v,0.

The non-trivial FP corresponds to a limiting cycle where
b = Be®* with real Q, d = const = iyq — v.

0 = —Re(v) + (Il - ) g, B = o= e @4

This is the main result of quasi-linear theory:

po is distorted by the unstable mode in such a way that the
mode is stabilized.

A constant distortion changes both rms bunch length and the
energy spread.
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7 Two interacting modes

Analysis in more general cases is complicated.

Let us consider two dipole modes, one unstable with eigen-
values v, I'm[nu] = v" > 74, and another stable mode with eigen-
value .

by + (iv + ya + idy, )by + idy b, = 0, (25)
by + (38 + Ya + idy )by, + idy, b, = 0, (26)

and four equations for d, for example

dl//l, + ’YOdz/,u, = —1 Z (VI* - N’)P:’i,;;,’ b;*/'b/t’- (27)

vl

* The mode stability depends on I', = v, — Imlv +d,,).

Consider small b[0], d[0]. The unstable mode leads to growth of
dy

dyy + Yody, = —207 P2¥ b, |2

1124

If Im[P);}] > 0, then d,, < 0 and mode can be stabilized and even
starts to decay with time.

* Due to the same mechanism, T, of stable mode is modified.
If Im[P/#] < 0, the linearly stable mode can become unstable
when linearly unstable mode saturates.

* After that, their roles interchange and the process can repeat
itself.

* The fastest growing mode is the most stable mode in the linear
approximation.

* Analysis gives the FP allowing the limiting cycles, b, b, x
—i{ds
¢

were §} is real.

* Location of the FP can be determined analytically.

Computer simulations based on Egs. () confirmed these results.

In the same way interaction of other modes can be explored.
Fig. depicts saturation of two linearly unstable modes, one quadrupole
and another dipole.

Fig. shows supression of the dipole mode in the interaction of
linearly unstable and stable dipole modes with linearly unstable
quadrupole mode.



relaxdipole.nb

1O O O

CY (DY Y (D

DR O .

«
(R

i
CY e

<

coupling 1111 coupling 1122

; 05
22 0.05 A
20 0 ot
! 0,05V V W
-3 R -0.1
0 102C:24050 0 1020304050
coup.inz 2211 coupling 2222
Bt 0.15
i 0.1
o 0.05
= 0
o -0.05
. -0.1
z -0.15

0710 2C 22 40 50 0 10 20 30 40 50

Coupling coefficients Im[P] for all 50 modes.

Unstablemode is #41, themost stable mode #40 .

12!



relaxsimple]0.nb

1000 2000 3000 4000 5000

lambda=12.5664 alph=0.5 om'=0.1 om2p=0. jbar=0.5

(S SR RN

1000 2000 3000 4000 5000

lambda=13.823 alph=0.5 om'=0.1 om2p=0. jbar=0.5

10

1000 2000 3000 4000 5000

lambda=15.0796 alph=0.5 om'=0.1 om2p=0. jbar=0.5

10

2000 4000 6000 8000 10000



relaxsimple10.nb

20

10

2000 4000 6000 8000 10000
lambda=2.4 alph=0.5 om'=0. om2p=0.1 jbar=0.5
12}

10

[o0]

[e)}

8200 8400 8600 8800 9000

lambda=2.4 alph=0.5 om'=0. om2p=0.1 jbar=0.5

15
12.5
10
7.

U Ut o,

2000 4000 6000 8000 10000

lambda=2.6 alph=0.5 om'=0. om2p=0.1 jbar=0.5

16
14
12
1

0
8
6
4
2

8200 8400 8600 8800 9000



e —

relaxdipole.nb 1

bl

0.04
0.035
0.03
0.025
0.02
0.015

50¥ 1050015050 250000

dll
0.0008

0.000¢6
0.0004
0.0002

5000 100001500020000

Code: relaxdipole .nb, lambda=6.88447 alpha=0.4 mu=1.5

omega =Hass, gam0=0.00001
, gamdip=0., 2 dipole modes=unstable +stable, interaction through rho0,
bl{0}=2 107 (-2), b2(0}=10"(-2), d[ik}[0]=0.0, eigen values=0.0429747 +0.0006275%4 I 0.198057

(2-



RELQUAD2.NB.nb 1

lam=6.88,mu=1.5,al=0.4

bl
0.035

0.03
0.025
0.02
0.015
0.01
0.005

10000200003000040000

b2

0.035
0.03
0.025
0.02
0.015
0.01
0.005

100002000030000400&b

a
0.00002

0.000015
0.00001
5%10°°

T0068000800080000

bl

0.035
0.03
0.025
0.02
0.015
0.01
0.005

100002000030000400db

- O
Hyse € neds Sf5

2d + /’L, , 7“4‘//&

-5
/K‘ —_!) —‘T %_(':—A)
|
Y = 17
77 e .
.v/a"r:’J-S‘ "F"(“‘(szzf‘
Pt .
L S 1 O P
e, ’ /2



relaxdipole.nb

out(65]=

bl

0.03

5000 10000 15000 20005

= Graphics =

Amplitude of linearlyunstable dipole mode (above)

and dynamic decrement (below) due to couplingtorho_ 0.
When tha latter is larger than linear increment (0.0019)
growth reverses sigm .

I,-J.fc_v4 ‘76/‘/] i ?/’,, i

r

i1



relquaddipole.nb

0.175
0.15
0.125
0.1
0.075
0.05
0.025

5000 10000 15000 20008

5000 10000 15000 20006
out(58]= = Graphics =
lambda =6.88447 alpha=0.9 mu=1.5

gam0=0.001 gamdip=0.0001 gamquad=0.0001

Dipole + Quadrupole modes, both
linearly unstable . Stabilizationis due to nonlinear interaction.

&

K . i ~fd Z s eprs



8 Beam-Beam

1D beam-beam interaction can be analyzed in the same way.

IN? . ) )
H = QyJ + <iVy To Z cimbtme) /dJ'pl(")(J', qB)S.,(,f[)(_J, Ji)’ (28)
271")/1 Tyl *
o 2 * 2 * ! 2
si200.7) = - [ L 2 2 e _ap, o)

where J, are Bessel functions, and ®[t] is error function.

Assume that the closest resonance is m+nQi,—{Q2y = A, A—>0
and average fast oscillations.

Functions f,

1 2)
) _ f(l)c—-i'n,Qﬁ’HA/z)tapE‘{)(J). p(2) _ f(2)c—'ilQ8—iA/2)f, 0P(H)(J)
o aJ : /! aJ

satisfy two coupled Vlasov equations.

Pl (30)

They can be expanded in eigen-functions V = (X,Y) of the ma-
trix [(0, M1), (M>,0)] where

8o (J)

M (J,J) = An 57

SEI T = 8T = I)[n(Q(J) — Q) + A/2], (31)

M, is obtained by exchange indexes.

Nonlinear coupling through p; leads to equations

i),, + ’L[V - Z’Yﬂ]bu = 'LZ d/t,nub/n (32)
1
dyp + Yadyy = iPYAE* Ab,. (33)

Preliminary result is shown in Fig.
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9 Conclusion

* Dynamics of the system in the nonlinear regime above the thresh-
old of instability may be quite complicated and substantially de-
pends on the impedance, radiation damping, and beam current.

* Additional to already known mechanisms of linear mode cou-
pling and Baartman-Dyachkov mechanism, there is another mech-
anism of nonlinear mode coupling.

* We explore the last mechanism and demonstrated that it may
lead to the saw-tooth oscillations for beam current close and above
the threshold of microwave instability.

* Results are similar to that obtained by Stupakov, Breisman,
Pekker (1996) but, from our point of view, allows more systematic
approach to the nonlinear collective phenomena.

Application of this approach to other cases mentioned in the
introduction, hopefully, will be presented later.
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