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1 Introduction

The aim of this paper is to give a notation for the magnetic field error coef-
ficients of helical dipoles. These coefficients shall be the magnetic multipole
coefficients of ordinary dipoles when the helical wave length tends to infinity.
Such a notation is different from Ref. [1].

For comparison, the magnetic field error notation for ordinary dipoles will
be presented first. The notation for helical dipoles is given thereafter.

2 Magnetic Field Errors of Ordinary Dipoles

In a current free region in vacuum where the electrical field E is constant, the
magnetic field B can be derived from a scalar potential v as

B = —Vy. (1)

We will use a Cartesian coordinate system (z,y,z) and a cylindrical coordi-
nate system (r,6,z). Here, z denotes the horizontal, y the vertical and z the
longitudinal direction. Furthermore we have

r=17r cosf, )
(2)

y=r sinf.

We consider a dipole of infinite length, thus neglecting fringe fields. The sym-
metry condition of such an element reads

P(r,0,z) = YP(r, 0,z + Az) (3)
where Az is arbitrary. Therefore, the potential ¢ is independent of z:

¥(r,0,2) = (r,0). (4)



Having a main field By in y-direction, the solution of the Laplace equation
Ay = 0 can be written in cylindrical coordinates as

P(r,0) = —Bo{rsinﬁ +
()

o0 rn+1
+ Z ni 1? [an cos ((n + 1)8) 4 by sin ((n + 1)9)]}

n=0

The term —Bgrsinfé gives the main field and the coefficients a, and b, de-
note deviations from the main field. The b, are called “normal” and the a,
“skew” multipole coefficients. Here, the subscript “0” denotes a dipole, “1” a
quadrupole etc. rg is a reference radius. For the RHIC dipoles rg = grcoil 18
used with r.,;; = 40 mm.

From equations (1) and (5) the magnetic field can be obtained in cylindrical
coordinates. We have

B, = By {sinﬁ + Z (%) [an cos ((n+ 1)0) + by sin ((n + 1)9)]} ,

By = By {COSH + Z (:—0) [by cos ((n+1)0) — apsin ((n + 1)9)]} ;(6)

B, =0.

The Cartesian components of B can be written as

B. = B {i <L>n [y cos(nf) + by sin(na)]} ,

r
n=0 0

B, = By {1 iy (—) [b cos(nf) — a, sin<ne>]} ,
M

which can also be expressed as

By +iB; = By

1+§:(bn+ian) <Ijoly>n] . (8)

n=0

Note that the European notation (see for example Ref. [2]) differs from the
American one presented here. The transformation is

bn(American) = by 41 (Furopean), (9)

an (American) = —a, 41 (Furopean). (10)



3 Magnetic Field Errors of Helical Dipoles

We consider again a magnet of infinite length, thus neglecting fringe fields. The
symmetry condition for a helical dipole 1s

P(r,0,z) = (r,0 — kAz, z + Az), (11)

where Az is arbitrary. In other words, & — kz = const. k = 2m/\ is the wave
number and A the wave length of the helix. & shall have the positive sign for
right-handed and the negative sign for left-handed helices. Introducing the new
variable

=0—kz, (12)

the symmetry condition (11) leads to a potential ) which is only dependent on
r and 6:

W(r, 0, z) = p(r,6). (13)

The tilde shall remind the reader of the fact that 6 in a helix is similar to 6 in
a ordinary dipole. Using (r, ) as coordinates and having a transverse helical
main Field By a solution of the Laplace equation Ay = 0 is (cf. Eq. (5) and
Ref. [1])

U(r,0) = —BO{%Il(kr) sinf +

N i 27t 1) 1
(n+1)n+2 plgntl

n=0

X {&n cos((n 4 1)0) + by sin((n + 1)5)} }

g1 ((n+ DEr) x (14)

where I, are modified Bessel functions. Similar to the ordinary dipole case,
the term —BO%h(kr) sin yields the main field and the coefficients Zn, a,, the
deviations thereof. Here, the 5n are called “normal” and the a, “skew” helical
multipole coefficients (with respect to the direction of the main field By). The
subscript “0” denotes a helical dipole, the subscript “1” a helical quadrupole
etc. rg is again a reference radius.

The factors in (14) are chosen in such a way as to obtain the potential (5)
when the helical wave length tends to infinity. In this case £ — 0, § — 0 and
the Bessel function can be approximated by (cf. Ref. [3])

Q@%T;. (15)



Now, the magnetic field can be computed as (cf. Ref. [1])

B, = BO{QI{(kr) sin 0 +

2" (1)1
I PERLE

n=0

X [an cos((n + l)é) +b, sin((n + 1)5)} },

r 1)k
(n+1)n+1 Tgkn n+1((n+ ) T‘) X

B, = —BO{2I1(kr) cosf +

2t (n 4 1)1
+Z (n+ 1)+l rok

n=0

X [?}n cos((n + 1)5) — dp sin((n + 1)5)} },

—Ing1((n + 1)kr) x

where I/ denotes the derivative with respect to the argument of the Bessel
function.

Since the Bessel function is nonlinear, the magnetic field of a helical dipole
is nonlinear too, even the main field given by By. Close to the magnet axis we
have r — 0 and the field can be approximated by

B; = —Bgsin(kz),
By = By cos(kz), (17)
B, = —Bgk [z cos(kz) + ysin(kz)],

i.e. even close to the magnet axis there is a longitudinal field component that
will lead to coupling.
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