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1. Introduction

The definitions of the magnetic field in MAD and in the standard multipole expansion
(SME) used internally by Teapot are different. This note, perhaps for the umpTeenth time,
defines the relationship between the two field definitions, assuming that they are in fact
referring to the same physical quantity. After this discussion we define the relationship
between RHIC’s measured multipole coefficients and those of Teapot.

2. B Field in MAD

The magnetic field in MAD is defined by a Taylor series expansion along the z axis
as [1]
Nmaz BMAD yn

By AP(2,0)= )" ~ (2.1)
n=0
The strength of a multipole, K, is defined to be
MAD
K, = %o/e : (2.2)
and thus B¥AP can be computed as
anBéWAD

(W)x:yzo-



3. B field according to the Standard Multipole Expansion

The true magnetic field of a physcial magnet can be described by a field strength
BIrue (z,y,2), Bgr“e (2,y, z). The thin element model then expresses this true field strength
in terms of nominal field strengths By (z,y), By(z,y) as

/[Bgrue (l',yaz) + Z-Bgrue (ijy?z)]dz = L[By (‘/Evy) + 1B, (l’,y)] (31)

where the integral is taken over the length of the magnet. The standard multipole expan-
sion for By and By is then given by [2]

Nmag
(LBy) +i(LBy) = (LB,) Y (bn+ian) (z +1iy)". (3.2)

where we specialize to the case of a dipole. So B, is the dipole field strength at the origin.
Nmag 1s the highest order of multipole in the series expansion. Defining Ry, 41, = (z+1iy)”
we can re-write the field components in the SM expansion as

Nmag
B, = po/e Z by Ry, (3.3)
Nmag
B, po/ Z buly + @nR (3.4)
where IB i IB
in = —dn, by = —"by. (3.5)
Po/e Po/e

The scaling factors above are conventional, but the magnetic fields (f?x, By) so defined are
just the deflections that particles experience passing through the field, and the coefficients
(an,by) are the ones used directly by Teapot. The factor of p,/e is often referred to as
“Bp”. The following table [2] gives some explicit examples of the multipole expansion.
Also note the traditional jargon used there, e.g., A6 is the “bend angle”, f is the “focal
length” and S is the “sextupole strength”, etc



n R, I, by an Az = —By Ay = B,

Horizontal bend |0 1 0 Ab, 0 —Ab, 0
Vertical bend 0 Ad, 0 Ad,

Erect quadrupole |1 x Y q=1/f 0 —qz qy

Skew quadrupole 0 qs = 1/ fs qsY qsx
Erect sextupole |2 | z? —y? 2zy S/2 0 —%(1‘2 —y?) %‘Zmy
Skew sextupole 0 Ss/2 %‘ZIy %(1‘2 —y?)
Erect octupole |3 |23 — 3zy?  3z?y — o3 0/6 0 —9 (23 - 3zy?) 9 (3z%y — °)
Skew octupole 0 0;/6 9 (3z%y — o?) 9 (2% — 3zy?)
Erect decapole |4 |z* — 622y? 4zy(z? —y?) | D/24 0 —2D—4(a:4 — 622y? + y*) 2%433@/(1‘2 - %)
Skew decapole +yt 0 D /24 %41‘3}(3}2 - %) %(1‘4 — 622y? + y*)

Table 3.1: Deflections, Az’, Ay, caused by standard magnets and notation for their
strengths

4. Relation between MAD K,, and SME b,

Assuming that the field strength B, is the same physical quantity in either represen-
tation, we want to find how K, is related to b,. Using the definition in terms of partial
derivatives and noticing that

oI,
(W)m:y:O =0

O"R,
(jé;g—)x=y=0 = n!

we see that

BZWAD N B,
K,=(—2 ) = L~ ', = n'b,. (4.1)
Po/e Po/e
The integrated strength is
B,L B,L
K, -L = nlb, = n'b, (4.2)
Po/€ Bp
and in terms of by, 3
Ky L = nlb,. (4.3)

The above K, apply to the case of standard elements of length L. If one is instead talking
about MAD’s multipole element which is defined to have zero length, replace K,-L in
Eq. (4.3) by Kl, to get the corresponding MAD multipole notation.




5. Skew components in MAD and SME

The definition of the magnetic field from the MAD documentation in Eq. (2.1) explicitly
excludes skew multipole moments, so it is not possible to derive a relation between MAD’s
way of defining skew multipole elements and SME’s a,, directly unless one looks into the
Teapot code itself. We have done this (with the help of R. Talman). However, one can
perhaps see the result on physical grounds if one considers only a single multipole. One can
‘convert’ an erect multipole of order n into its corresponding skew element by a rotation
of the erect element around the longitudinal direction by its natural symmetry angle of
7/(2n+2). In this way a pure erect multipole of order n becomes a pure skew multipole of
the same order. So one can conclude that a the strength of a skew element which is defined
in MAD by specifying a multipole of strength K1, = value and T;, (without a value) is
related to Teapot’s a, as

B,L B,L
(Kln)‘qkew = nla, = nlay, (5.1)
Po/€ Bp
and
(K1) ™" = nla,. (5.2)

(If one is instead interested in skew magnets of finite length, then replace K, above by
K, L as discussed earlier for the non-skew case.)

5.1. Aside: How does Teapot do it?

For those who might want to know precisely how Teapot transforms the MAD input
specification of multipole strength into the SME form, here is an example of the (old)
Fortran code that was used to do this transformation.(The C++ version of Teapot uses
an equivalent formulation.) The example shown below is for MAD’s octupole and general
multipole. The relevant lines to focus on have been indicated with arrow marks. The
explanation follows the listing.

ELSEIF (itype .EQ. 7) THEN

C ---- "octupole"
nmax(ikelem) = 3
--> el = pdata(idp)

thklen(ikelem) = el

--> val = pdata(idp + 1)*el/6.
*——D% ang = pdata(idp + 2)*4.

--> btw(3, ikelem) = val*cos(ang)
--> atw(3, ikelem) = val*sin(ang)

typeaper(ikelem) = pdata(idp + 3)

xapsize(ikelem) = pdata(idp + 4)
yapsize(ikelem) = pdata(idp + 5)
xoffset(ikelem) = pdata(idp + 6)
yoffset(ikelem) = pdata(idp + 7)

mxstreng(ikelem) = pdata(idp + 8)



[}

ELSEIF (itype .EQ. 8) THEN

C ---- "multipol"
DO i1 =1, 9
-=> val = pdata(idp)/fact(i)
*—=D% ang = pdata(idp + 1)*(i + 1)
idp = idp + 2
--> btw(i, ikelem) = val*cos(ang)
-—=> atw(i, ikelem) = val*sin(ang)
IF (iptyp(idp - 2) .NE. -1) nmax(ikelem) = i
ENDDO

typeaper(ikelem) = 0

Note: The variables atw(n,—),btw(n, —) in the above code have exactly the same
meaning as dn, by in Bq. (3.5).

First we discuss the octupole case. In the above code pdata is the array containing all
the information gleaned by MAD’s parser from the original standard input file. el is the
length L of the octupole. wval is a local variable which equals K, * L/3!. ang is another
local variable which in the case where one just specifies TILT without an argument is the
default roll angle of 7/8 times 4. (This is the mysterious point. We only show how Teapot
does this transformation, we don’t explain the basis for it). One can see that 4x7/8 = 7/2,
and thus btw(3, —) = 0, atw(3,—) = val = K, * L/3!.

Now that we've done the octupole case, consider the thin multipole case that follows
it. The meaning of the code variables is the same as in the octupole case. Since thin
multipole have no length, the code is simpler in some respects. The variable ang specifies
how the roll angle determines the strength of the skew element. For example, in the case
where one takes the default roll angle of 7/2i 4 2 for a skew multipole of strength K/;, one
states T; without an argument in the input file. Then the value of ang = pdata(idp + 1) *
(t4+1)=(n/20+2)* (1 + 1) = x/2. This leads to values of btw(i, —), atw(i, —) of 0 and
pdata(idp)/ fact(i) = Kl;/i!, respectively, in agreement with Eq. (5.2).

6. Relating RHIC’s Measured Multipole Coefficients to those of Teapot

The field expansion in Eq. (3.2) actually applies in general only to dipoles since the
central field value B, vanishes (or at least ought to) for other types of magnets such as
quadrupoles, sextupoles, etc. So one must adopt a different but analogous convention for
other magnet types. In chapter two of Ref. 2 there is a clear discussion of one way to do
this for the case of quadrupoles, and we can compare that with the way RHIC describes a
general magnet. The multipole expansion for a quadrupole magnet from Ref. 2 is

(LBg?) t (LBg?) _ (Laig)[x +iy 41074 \i (bg n m?) (a:];:liiyl)”] (6.1)
n=2 r

where R, is the reference radius where the measurement is made, and along with R, the
factor of 107* is chosen so that ag, bg are of order 1 for “bad”, low order multipoles. The



prefactor, in this case the field gradient, (aBg/azz:)x:y:o, serves the same purpose as B,
in Eq. (3.2).

In general for every type of magnet, there is a formula of this type. The prefactor
like Bo(aBg/aaﬁ) in the case of dipoles(quadrupoles) sets the scale so that the coeficients

n, bn(ag, bg) represent fractional deviations from the measured field strength. A similar
analysis can be done for the other types of magnets. To summarize, the normalization
of multipole coefficients via Eq. (6.1) requires knowing the behaviour of the field at the
origin.

In contrast to Eq. (6.1) RHIC has used a slightly different form to represent the multi-
pole expansion for a general magnet. According to our sources [3-4] and references [5-6],
there is uniform strategy for every type of magnet that is representative of the way the
magnets are actually measured. In the following we will assume that the local coordinate
system of Teapot and the magnetic measurement system are the same. If this is not true,
for example, if the magnet is oriented differently in the lattice compared to the way it was
measured, appropriate modifications to the sign of the coefficients will need to be made [6].
With this caveat, the RHIC convention for a magnet’s multipole expansion is [5]

Nmax
(LB,) +i(LB,) = LB(R,)[107* Y (b;‘f +m;‘/)

n=0

(z +iy)"

R ] (6.2)
where the superscript M in a¥,bM denotes the fact that these are measured multipole
coefficients. B(R,) is a normalization factor. This normalization is chosen so that the
magnitude of the term of order k in the expansion, |b£4 + iagﬂ = 10* for a magnet with
multipolarity 2(k + 1). Consequently the multipole coefficient, bjy, for a “normal” or
“upright” magnet of order k is 10%. Le., bg/[ for dipoles is 104, b for quadrupoles is 10%,
and similarly for skew magnets so that for a skew quadrupole ai4 would be 10%.

Since RHIC normalizes its multipole coefficients in this way, comparison with an ex-
pression like Eq. (6.1) for a specfic kind of magnet can be obtained by evaluating Eq. (6.2)
along the x axis near the origin. We will do this exercise in the appendix, but it is not
actually necessary. Teapot only requires that the magnetic field be brought to a form like
Eq. (3.2). Eq. (6.2) is already in this form, so making the correspondence with Teapot is
straightforward up to possible reversals in sign that are discussed in RHIC/AP /95 [6] and
summarized in the next section.

The factor L B(R,) on the right hand side of Eq. (6.2) is measured at a fixed current
by the magnetic measurement group of RHIC and quoted as the Integral Transfer Function
or ITF, i.e., ITF-I = L B(R, ), where I is the current in kA at which the measurement
was made. The reference radius, R,, is also given for each measurement.

The ay, b, of Teapot are recovered from the above measured expansion coefficients in
analogy to Eq. (3.5) by

. ITF-I 10—4bM

b, = 6.3

(o (6:3)
ITF-I_107%

L= A 6.4

a (po/e)R;la” (6.4)

where the b¥ | oM are the measured multipole coefficients, p,/e is Bp, and I is the current

at which the measurement was made in kA.



In some cases, particularly for dipoles, the RHIC magnetic measurements group does
more detailed measurements of the magnetic multipoles. They measure them at the body
center as well as the return and lead ends of the magnet. If this group of measurements is
available, a different form of the Teapot coefficients is needed since the physical dimension
of the measured multipole coefficients are different for the body and end data.

If Body measurements exist, we specify body ESOdy, ELSOdy for Teapot as

- BTF-I_, ITF 107* ITF-T 1071
Po/e r Pofe T
BTF.-I_ ITF 1074 ITF-1 1074
~Body _ M—Body _ M — Body 6.6
an ( po/e )(BTF) R,T.l an ( po/e ) R? an ( )

where BTF' is the body transfer function with dimension Tesla/kA, and the superscript
M — Body refers to “measured Body”. The factor of ITF/BTF has dimension of length
in meters and is needed to scale BT F so that it has the dimensions of an integral transfer

M — Bod M — Bod . .
" Y an °% are dimensionless.

function since b
If End measurements exist, then the lead and return end coeflicients for Teapot are
given by:

BTF-I 10~¢ yM—End

pEnd _ 6.7

PR (6.7)
BTF-I 10~¢

~FEnd __ M—FEnd

" = (= =) g an (6.8)

where BTF is again the body transfer function referred to above, and note that in this
case since the dimension of pM—End oM—End 35 ip meters, only BTF rather than ITF is
needed.

7. Afterward on Sign Conventions for Multipole Coefficients

RHIC magnets are measured in a standard way, i.e., the lead end of each magnet is
oriented with respect to a local magnet coordinate system in the same way during the
measurement process. Thus the measured multipole coefficients are directly tied to the
local measurement coordinate system’s orientation.

During installation in the tunnel a magnet may need to be rotated by = radians around
the Y axis relative to the coordinate system in which it was measured either for physics
or mechanical/installation reasons. In these cases the sign of some multipole coefficients
used in Teapot will need to change (relative to their signs in the measurement database)
to properly model the dynamics in the global coordinate system used by Teapot. The
nature of these sign changes has been explained in Ref. 6, and we will not reproduce their
detailed analysis here. However, for purposes of keeping the definitions of Teapot multipole
coefficients in terms of RHIC’s measured values all in one place, we include the necessary
rules here. We thank Fritz Dell for the following formulation of these rules.

The rules require an understanding of a magnet’s “orientation”. A magnet’s orienta-
tion is defined to be positive if a positive displacement relative to the horizontal closed
orbit corresponds to a positive horizontal displacement with respect to the magnet local



coordinate system discussed above. Otherwise the orientation is negative. See Ref. 6 for a
clear statement of the definition of the local magnet measurement coordinate system and
its relation to the lead and non-lead ends of the magnet.

1. For Normal magnets whose main multipole is even (dipoles, sextupoles, etc.),
or for Skew magnets whose main multipole is odd (quadrupoles, octupoles,

etc.)
e Positive orientation: use b, aM as is.

e Negative orientation: change sign of b¥ with odd n, and change

sign of a¥ with even n.

2. For Normal magnets whose main multipole is odd (quadrupoles, octupoles,
etc.), or for Skew magnets whose main multipole is even (dipoles, sextupoles,

etc.)
e Positive orientation: use b,jy, g/[ as 1s.

o Negative orientation: change sign of b with even n, and change
sign of a™ with odd n.
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A. Relating B(R,) to the Field at the Origin

The normalizing factor B(R,) can be related theoretically to the value of the field at the
origin in the following way. From Eq. (6.2) the value of the integrated field at y = 0 is

Nmax n
: _ 4 M MY T
(LB, + iLBy)|y—0 = L B(R,)[10 ; 0: (b +ial )Rn] (A1)

f\

For a “normal” magnet of order k, bM = 10%, ¢} = 0. Taking partial derivatives k

times, we have

ak(LB ) B bz\l
Tkyh:yzo = k!(LB(R,))10 4#. (A.2)
Noting that bM = 10% in the case of a normal magnet of order k, we find
"B RY
B(R) = (57" Nlo=y=077 (4.3)
For the case of a skew magnet of order k£ a similar analysis yields
0" B, RF
B(R:) = (7 )lo=y=077 (A.4)
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