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Asymptotic Behavior of 1D FEL Dispersion Integral at Large |s|

G. Wang, V. N. Litvinenko, S.Webb

Introduction

In 1D approximation, the behavior of a Free Electron Laser is determined by the
dispersion relation[1]:
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where b(s) is dispersion function given by
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P= EE_ £, is the normalized energy deviation, E is the energy of an electron, E, is the
oP

nominal energy of the electron beam, p is Pierce parameter, C is the normalized

detuning, A is the space charge parameter, and F (ﬁ) is the normalized distribution

P
function of electron energy deviation'. Studying the analytic behavior of eq. (1) can lead
to deep insights of the FEL system such as the number of modes that 1D FEL can
amplify and the frequency range of the amplifications. One approach that has been

recently under investigation is to consider the mapping of s — s —15(3) along a contour

as shown in fig. 1. It is important to understand the behavior of D(s) along the arc of the
s integration contour in fig. 1 in order to deduce the solution of eq. (1) In this note, we
will derive the asymptotic behavior of b(s) at |s| — o for Re(s) >0, i.e. the arc part of

contour C in fig.1.

Deriving the upper limit of ‘15(5)‘

Assuming the distribution function satisfying lim F' (13)= 0, integration by parts of eq. (2)

| P>

! For the definition of variables, please refer to reference [1].
* Details of the work are under preparation for publication.
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Complex w(s) =5- 13(3) plane
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Figure 1 Mapping from s to w(s). The contour C in (a) comprises of two homogenous
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parts, the arc s :R-e( : ); —7z+arcsm[Ej< < —arcsm[;) and the vertical line

s=&—-i&; —R<&E<R  with R— o , with £>0 being an arbitrary small positive

number.

generates

for Re(s)> 0. Defining

the requirement of Re(s)> 0 leads to

sind <0.

Inserting (4) into (3) and changing the integration variable to

aol
i
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produces
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Explicitly writing eq. (7) into real and imaginary part and change the integration variable

oy
A

e
P, =P +—+cos@ ,
eq. (7) becomes
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Taking into account eq. (5) and change the integration variable of (10) to
b,
= 12
. sind (12)
generates
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The amplitude of eq. (13) is given by
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Noticing the distribution function }2 (x) = F (13)2 0,2x<x’+1 and
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we obtain the up-limit of |D(S)|
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1. Bounded F (ﬁ)
if £(P) is bounded, i.c.
FlP)<F,.. vP (19)
eq. (18) becomes
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Hence we obtain
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Taking & as the smallest value of Re( ) along the contour C of fig. 1(a) and taking

|s|<— ! ,€q. (21) leads to
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2. Bell-shape F (13) Falling Faster than Lorentizan Distribution
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Assuming the distribution function F ( ) satisfies

A

F(P)<aF,(P), vP (23)

with
A 1 1
Ap)——— (24)
™1+ P /q

and a being the ratio of the maximum of F (f’) with respect to ﬁo (}3), i.e.

> B‘ﬁ)

= pmx (25)
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Applying eq. (23) to eq. (18) leads to
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Inserting eq. (27) into eq. (26) leads to
" aind
. | sin
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In the limit of R = |s| — 0, eq. (24) becomes

lim

| s] >0

i
Dis)| <27k, 7 {1+Re(s)} (29)

for Re(s)> 0.

A il o+Z
Let’s consider D(s) at the arc of the contour C in Fig.l (a) s:R-e[ ZJ,

-T+ arcsin(%j <f< —arcsin(%j with R > o and &£>0 being an arbitrary small

positive number. From eq. (29) we then can estimate that on the arc

hm‘D(s)‘ <27GF o 3 [1+ﬂ (30)
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Selecting R = \/m{l + 1} we making
&£ &g

lim ﬁ(s)‘ <e 31

R—0

on the entire arc. Since ¢> 0 is an arbitrary small positive number, setting & — 0 proves
that ﬁ(s)— > 0at |s| — oo in the right plane of Re(s)> 0.
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