
JClass Chart
Programmer’s Guide

Version 6.0 �

for Java 2 (JDK 1.2.2 and higher, including JDK 1.4)

The Best Java Charting Solution

TM

260 King Street East
Toronto, Ontario, Canada M5A 4L5
416-594-1026
www.sitraka.com

March 2002 RefNo: PRGDE-JCCHT/600-03/2002

Copyright © 1997-2002 by Sitraka. All rights reserved.

Sitraka, the Sitraka logo, JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements,
JClass Field, JClass HiGrid, JClass JarMaster, JClass LiveTable, JClass PageLayout , JClass ServerChart,
JClass ServerReport, JClass DesktopViews, and JClass ServerViews are trademarks of Sitraka.

Java is a trademark of Sun Microsystems Inc. Microsoft, MS-DOS, and Windows are registered
trademarks, and Windows NT is a trademark of Microsoft Corporation.

All other products, names, and services are trademarks or registered trademarks of their respective
companies or organizations.

Use of this software for providing LZW capability for any purpose is not authorized unless user first
enters into a license agreement with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts.
For information concerning licensing, please contact:

Unisys Corporation
Welch Licensing Department – C1SW19
Township Line &Union Meeting Roads
P.O. Box 500
Blue Bell, PA USA 19424

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

Preface . 1
Introducing JClass Chart . 1
Assumptions . 2
Typographical Conventions Used in this Manual 2
Overview of Manual . 3
API Reference . 4
Licensing . 4
Related Documents . 4
Technical Support . 4
Product Feedback and Announcements 6

Part I: Using JClass Chart

1 JClass Chart Basics. 9
1.1 Chart Areas . 9
1.2 Chart Types . 10
1.3 Loading Data . 13
1.4 Setting and Getting Object Properties 13

Setting Properties with Java Code 13
Setting Applet Properties in an HTML File 14
 Setting Properties with a Java IDE at Design-Time 15
Setting Properties Interactively at Run-Time 16

1.5 Other Programming Basics 16
1.6 JClass Chart Inheritance Hierarchy 17
1.7 JClass Chart Object Containment 18
1.8 The Chart Customizer 19

Displaying the Chart Customizer at Run-Time 19
Editing and Viewing Properties 20

1.9 Internationalization 21
i

2 New Chart Types and Special Chart Properties. 23
2.1 New Chart Type: Polar Charts 23

Background Information for the Polar Charts 24
Setting the Origin 25
Data Format . 26
PolarChartDraw class 26
Full or Half-Range X-Axis 27
Allowing Negative Values 27
Gridlines . 27

2.2 New Chart Type: Radar Charts 28
Background Information for Radar Charts 28
Data Format . 29
RadarChartDraw Class 29
Gridlines . 29

2.3 New Chart Type: Area Radar Charts 30
Background Information for Area Radar Charts 30
Data Format . 31
AreaRadarChartDraw Class 31
Gridlines . 31

2.4 JCPolarRadarChartFormat Class 32
2.5 Special Bar Chart Properties 33
2.6 Special Pie Chart Properties 34

Building the “Other” Slice 34
“Other” Slice Style and Label 35
Pie Ordering . 36
Start Angle . 36
Exploded Pie Slices 36

2.7 Special Area Chart Properties 37
2.8 Hi-Lo and Candle Charts 38

3 SimpleChart Bean Tutorial. 41
3.1 Introduction to JavaBeans 41

Properties . 41
3.2 SimpleChart Bean Tutorial 42

Steps in this Tutorial 42
ii Contents

4 Bean Reference .49
4.1 Choosing the Right Bean 49

JClass Chart Beans 50
JClass Chart Beans and JCChart 50

4.2 Standard Bean Properties 51
Axis Properties 51
Chart Types . 54
Display Properties 55
Headers and Footers 56
Legends . 57

4.3 Data-Loading Methods 58
SimpleChart: Loading Data from a File 59
SimpleChart: Using Swing TableModel Data Objects . . . 60
Data Binding in Borland JBuilder 60
Data Binding with JClass DataSource 63

5 MultiChart .69
5.1 Introduction to MultiChart 69

Multiple Axes 69
Multiple Data Views 70
Intelligent Defaults 70

5.2 Getting Started with MultiChart 70
5.3 MultiChart Property Reference 71

Axis Controls 71
Headers, Footers, and Legends 79
Data Source and Data View Controls 81
Appearance Controls 85
View3D . 87
Event Controls 88

6 Chart Programming Tutorial .89
6.1 Introduction . 89
6.2 A Basic Plot Chart 90
6.3 Loading Data From a File 92
6.4 Adding Header, Footer, and Labels 93
6.5 Changing to a Bar Chart 96
6.6 Inverting Chart Orientation 97
6.7 Bar3d and 3d Effect 98
6.8 End-User Interaction 98
6.9 Get Started Programming with JClass Chart 99
Contents iii

7 Axis Controls . 101
7.1 Creating a New Chart in a Nutshell 101
7.2 Axis Labelling and Annotation Methods 102

Choosing Annotation Method 102
Values Annotation 103
PointLabels Annotation 104
ValueLabels Annotation 105
TimeLabels Annotation 106
Custom Axes Labels 108

7.3 Positioning Axes 110
7.4 Chart Orientation and Axis Direction 111

Inverting Chart Orientation 111
Changing Axis Direction 111

7.5 Setting Axis Bounds 112
7.6 Customizing Origins 112
7.7 Logarithmic Axes 113
7.8 Titling Axes and Rotating Axis Elements 114
7.9 Adding Grid Lines 115
7.10 Adding a Second Axis 116

8 Data Sources . 117
8.1 Overview . 117
8.2 Pre-Built Chart DataSources 118
8.3 Loading Data from a File 118
8.4 Loading DataSource from a URL 118
8.5 Loading Data from an Applet 119
8.6 Loading Data from a Swing TableModel 120
8.7 Loading Data from an XML Source 120

XML Primer 120
Using XML in JClass 121
Specifying Data by Series 121
Specifying Data by Point 122
Labels and Other Parameters 123

8.8 Data Formats . 124
Formatted Data Examples 125
Explanation of Format Elements 126

8.9 Data Binding: Specifying Data from Databases 128
Data Binding using JDBCDataSource 128
Data Binding with JBuilder 129
Data Binding with JClass DataSource 130
iv Contents

8.10 Making Your Own Chart Data Source 132
The Simplest Chart Data Source Possible 132
LabelledChartDataModel – Labelling Your Chart 133
EditableChartDataModel – Modifying Your Data 135
HoleValueChartDataModel – Specifying Hole Values . . . 136

8.11 Making an Updating Chart Data Source 136
Chart Data Source Support Classes 136

9 Text and Style Elements. 139
9.1 Header and Footer Titles 139
9.2 Legends . 140

Customizing Legends 142
9.3 Chart Labels . 150

Label Implementation 150
Adding Labels to a Chart 150
Interactive Labels 151
Adding and Formatting Label Text 152
Positioning Labels 152
Adding Connecting Lines 153

9.4 Chart Styles . 153
9.5 Borders . 155
9.6 Fonts . 156
9.7 Colors . 156
9.8 Positioning Chart Elements 158
9.9 3D Effect . 159

10 Advanced Chart Programming. 161
10.1 Outputting JClass Charts 161

Encode method 162
Encode example 162
Code example 163

10.2 Batching Chart Updates 163
10.3 Coordinate Conversion Methods 163

CoordToDataCoord and DataIndexToCoord 164
Map and Unmap 165

10.4 FastAction . 165
10.5 FastUpdate . 165
10.6 Programming End-User Interaction 166

Event Triggers 166
Valid Modifiers 167
Programming Event Triggers 167
Contents v

Removing Action Mappings 167
Calling an Action Directly 167
Specifying Action Axes 168

10.7 Image-Filled Bar Charts 168
10.8 Pick . 169
10.9 Using Pick and Unpick 170

Pick Focus . 174
10.10 Unpick . 174

Part II: Reference Appendices
JClass Chart Property Listing. 177
A.1 ChartDataView 177
A.2 ChartDataViewSeries 179
A.3 ChartText . 180
A.4 JCAreaChartFormat 181
A.5 JCAxis . 182
A.6 JCAxisFormula 186
A.7 JCAxisTitle . 186
A.8 JCBarChartFormat 187
A.9 JCCandleChartFormat 188
A.10 JCChart . 188
A.11 JCChartArea . 190
A.12 JCChartLabel . 191
A.13 JCChartLabelManager 191
A.14 JCChartStyle . 192
A.15 JCFillStyle . 193
A.16 JCGridLegend . 193
A.17 JCHLOCChartFormat 194
A.18 JCLegend . 195
A.19 JCLineStyle . 195
A.20 JCMultiColLegend 196
A.21 JCPieChartFormat 197
A.22 JCPolarRadarChartFormat 198
A.23 JCSymbolStyle 198
A.24 JCValueLabel . 199
A.25 PlotArea . 199
A.26 SimpleChart . 200
vi Contents

Distributing Applets and Applications 203
B.1 Using JClass JarMaster to Customize the Deployment Archive . 203

HTML Property Reference . 205
C.1 ChartDataView Properties 205
C.2 ChartDataViewSeries Properties 206
C.3 JCAxis X- and Y-axes Properties 207
C.4 JCBarChartFormat Properties 208
C.5 JCCandleChartFormat Properties 209
C.6 JCChart Properties 209
C.7 JCChartArea Properties 210
C.8 JCChartLabel Properties 211
C.9 JCDataIndex Properties 212
C.10 JCHLOCChartFormat Properties 212
C.11 JCHiLoChartFormat Properties 212
C.12 JCLegend Properties 213
C.13 JCPieChartFormat Properties 213
C.14 JCPolarRadarChartFormat Properties 214
C.15 Header and Footer Properties 214
C.16 Example HTML File 215

Porting JClass 3.6.x Applications . 219
D.1 Overview . 219
D.2 Swing-like API . 220
D.3 New Data Model 221
D.4 New Data Subpackage 223
D.5 New Beans Subpackage 224
D.6 Data Binding Changes 224
D.7 New Applet Subpackage 224
D.8 Pluggable Header/Footer 225
D.9 JCChartLabelManager 226
D.10 Chart Label Components 226
D.11 Use of Collection Classes 227
D.12 No More JCString 227

Index . 229
Contents vii

viii Contents

Preface
Introducing JClass Chart � Assumptions

Typographical Conventions Used in this Manual � Overview of Manual

API Reference � Licensing � Related Documents

Technical Support � Product Feedback and Announcements

Introducing JClass Chart

JClass Chart is a charting/graphing component written entirely in Java. The chart
component displays data graphically in a window and can interact with a user.

The chart component can be used easily by all types of Java programmers:

� Component users, setting JClass Chart properties programmatically

� OO developers, instantiating and extending JClass Chart objects

� JavaBean developers, setting JClass Chart properties using a third-party
Integrated Development Environment (IDE)

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears during the installation.

Feature Overview
You can set the properties of JClass Chart objects to determine how the chart will
look and behave. You can control:

� Chart type (Plot, Scatter Plot, Area, Stacking Area, Bar, Stacking Bar, Pie, Hi-Lo,
Hi-Lo-Open-Close, and Candle, plus Polar, Radar, and Area Radar)

� Header and footer positioning, border style, text, font, and color

� Number of data views, each having its own data, chart type, axes, and chart
styles

� Flexible data loading from applets, files, URLs, input streams, and databases

� Chart styles: line color, fill color, point size, point style, and point color

� Legend positioning, orientation, border style, anchor, font, and color

� Chart positioning, border style, color, width, height, and 3D effect (Bar, Stacking
Bar, and Pie charts only)

� Axis labelling using Point labels, Series labels, Value labels, or Time labels
1

� Number of X- or Y-axes, each having its own minimum and maximum, axis
numbering method, numbering and ticking increment, grid increment, font,
origin, axis direction, and precision

� Control of user interaction with components including picking, mapping, Chart
Customizer, rotation, scaling, and translation

� Chart labels that can appear anywhere on the chart, including automatic dwell
labels for each point on the chart

JClass Chart is compatible with JDK 1.4. If you are using JDK 1.4 and experience
drawing problems, you may want to upgrade to the latest drivers for your video card
from your video card vendor.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming
and Java programming concepts such as classes, methods, and packages before
proceeding with this manual. See “Related Documents” later in this section of the
manual for additional sources of Java-related information.

Typographical Conventions Used in this Manual

Typewriter Font � Java language source code and examples of file contents.
� JClass Chart and Java classes, objects, methods,

properties, constants and events.
� HTML documents, tags, and attributes.
� Commands that you enter on the screen.

Italic Text � Pathnames, filenames, URLs, programs and method
parameters.

� New terms as they are introduced, and to emphasize
important words.

� Figure and table titles.
� The names of other documents referenced in this manual,

such as Java in a Nutshell.

Bold � Keyboard key names and menu references.
2 Preface

Overview of Manual

Part I — “Using JClass Chart” describes programming with JClass Chart.

Chapter 1, “JClass Chart Basics”, provides a programmer’s overview of
JClass Chart. It covers class hierarchy, object containment, terminology,
programming basics, and specific issues to be aware of before using JClass Chart.

Chapter 2, “New Chart Types and Special Chart Properties”, covers the three
new charting types – Polar, Radar, and Area Radar – plus outlines the special
features of other chief JClass Chart charting types.

Chapter 3, “SimpleChart Bean Tutorial”, introduces basic Bean concepts, and
guides you through developing a chart application in an IDE or BeanBox.

Chapter 4, “Bean Reference”, is a guide to the different JClass Chart Beans. It
illustrates all of the properties available, including the different data loading
methods.

Chapter 5, “MultiChart”, is a user’s guide for MultiChart, an advanced charting
Bean.

Chapter 6, “Chart Programming Tutorial”, is designed to introduce you to
JClass Chart programming, by compiling and running an example program. It
includes examples of common chart programming tasks.

Chapter 7, “Axis Controls”, covers JClass Chart properties used when first
setting up your chart, concentrating on axis properties.

Chapter 8, “Data Sources”, shows how to use different pre-built data sources and
outlines how to use the data source toolkit to create your own.

Chapter 9, “Text and Style Elements”, covers JClass Chart properties used to
customize the appearance of a chart, including header/footer, legend, and chart
styles.

Chapter 10, “Advanced Chart Programming”, looks at programming more
advanced aspects of the chart.

Part II — “Reference Appendices” contains detailed technical reference information.

Appendix Appendix A, “JClass Chart Property Listing”, summarizes the
properties contained in all of the JClass Chart objects.

Appendix B, “Distributing Applets and Applications”, is an overview of how to
deploy applets and applications.

Appendix C, “HTML Property Reference”,lists the syntax of JClass Chart
properties when specified in an HTML file.

Appendix D, “Porting JClass 3.6.x Applications”, comprises the key changes to
version 4.0 and the recommended porting strategy.
Preface 3

API Reference
The API reference documentation (Javadoc) is installed automatically when you
install JClass Chart and is found in the JCLASS_HOME/docs/api/ directory.

Licensing
In order to use JClass Chart, you need a valid license. Complete details about
licensing are outlined in the Getting Started Guide, which is automatically installed
when you install JClass Chart.

JClass License Agreements
JClass License Agreements can be found online at
http://www.sitraka.com/software/support/jclass/tsjclasslicensing.html

Related Documents
The following is a sample of useful references to Java and JavaBeans programming:

� “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun
Microsystems

� For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html

� “Java in a Nutshell, 2nd Edition” from O’Reilly & Associates Inc. See the O’Reilly
Java Resource Center at http://java.oreilly.com

� Resources for using JavaBeans at http://java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass Chart, but
they can provide useful background information on various aspects of the Java
programming language.

Technical Support
Many of the initial questions you may have concern basic installation or
configuration issues. Consult this product’s readme file and the Getting Started Guide
(available in HTML and PDF formats) for help with these types of problems.

Sitraka’s Gold Support with Subscription plan is included with your purchase and
entitles registered users with a valid JClass software license to the following support:

� Product documentation, API reference, and demos and examples, included with
the product and/or downloadable from our Web site, and/or available online.

� All product upgrade releases; download from our Web site.

� FAQ Documents on our Web site.

� JClass Knowledge Base, a searchable collection of information including
program samples and problem/resolution documents.

� SupportWatch, a convenient way to log and track support requests over the Web.
4 Preface

../../readme.html
../getstarted/index.html
../api/index.html
../api/index.html
../getstarted/index.html
http://www.sitraka.com/software/support/jclass/tsjclasslicensing.html
http://www.javasoft.com/docs/programmer.html
http://www.javasoft.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html

http://java.oreilly.com
http://www.javasoft.com/beans/resources.html

� Direct technical support for one full year.

� JClass Forum Newsgroup, where you can communicate with other developers
using JClass products around the world.

For additional information and pricing for JClass Gold Support with Subscription,
please visit our online store or your JClass reseller. You can also email
sales@sitraka.com.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying
the following information will help us serve you better:

� Your name, email address, telephone number, company name, and country
� The product name, version, and serial number
� The JDK (and IDE, if applicable) that you are using
� The type and version of the operating system you are using
� Your development environment and its version
� A full description of the problem, including any error messages and the steps

required to duplicate it

You may also use our online email form to submit the above, available at
http://www.sitraka.com/software/support/jclass/tsjclasssupport.html

JClass Direct Technical Support

SupportWatch (Web-
based support tool)

https://supportwatch.sitraka.com
(to help protect the confidentiality of your information,
SupportWatch is provided over a secure Internet
connection)

JClass Support Email jclass_support@sitraka.com

Telephone
800-663-4723 (toll free in North America) or
416-594-1026
Available Monday – Friday, 9:00 a.m. to 8:00 p.m. EST

Fax 416-594-1919

European Customers
Contact Information

Email: eurosupport@sitraka.com
Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
Available Monday – Friday, 9:00 a.m. to 5:00 p.m. CET

Other Support Resources

Using JClass in IDEs http://www.sitraka.com/software/jclass/jclassides.html

JClass FAQs http://www.sitraka.com/software/support/jclass/tsjclassfaq.html

JClass Technical Support
(links to Knowledge Base)

http://www.sitraka.com/software/support/jclass/tsjclasssupport.
html

JClass Forum Newsgroup http://newsweb.sitraka.com/cgi-bin/dnewsweb/
Preface 5

http://www.sitraka.com/software/support/jclass/tsjclasssupport.html
sales@sitraka.com
http://www.sitraka.com/software/jclass/jclassides.html
https://supportwatch.sitraka.com
mailto:jclass_support@sitraka.com
mailto:eurosupport@sitraka.com
http://www.sitraka.com/software/support/jclass/tsjclassfaq.html
http://www.sitraka.com/software/support/jclass/tsjclasssupport.html
http://newsweb.sitraka.com/cgi-bin/dnewsweb/

Product Feedback and Announcements
We are interested in hearing about how you use JClass Chart, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:

Sitraka
260 King Street East
Toronto, Ontario, M5A 4L5 Canada

Phone: 416-594-1026
Fax: 416-594-1919
Email: jclass_suggestionbox@sitraka.com
Internet: http://newsweb.sitraka.com/cgi-bin/dnewsweb/

While we appreciate your feedback, we cannot guarantee a response.

Occasionally, we send JClass-related product announcements to our customers using
an email list. To add yourself to this mailing list, send email with the word
“subscribe” in the body of the message to javanews-request@sitraka.com. Visit the
Sitraka Web site at http://www.sitraka.com for more details.
6 Preface

mailto:jclass_suggestionbox@sitraka.com
mailto:javanews-request@sitraka.com
http://www.sitraka.com
http://newsweb.sitraka.com/cgi-bin/dnewsweb/

Part

Using
JClass Chart

1
JClass Chart Basics

Chart Areas � Chart Types � Loading Data
Setting and Getting Object Properties � Other Programming Basics

JClass Chart Inheritance Hierarchy � JClass Chart Object Containment

The Chart Customizer � Internationalization

This chapter covers concepts and vocabulary used in JClass Chart programming,
and provides an overview of the JClass Chart class hierarchy.

1.1 Chart Areas

The following illustration shows the terms used to describe chart areas:

Figure 1 Elements contained in a typical chart
9

1.2 Chart Types

JClass Chart now includes three new charting types: Polar, Radar, and Area Radar.

JClass Chart can display data as one of 13 basic chart types: Plot, Scatter Plot, Area,
Stacking Area, Bar, Stacking Bar, Pie, Hi-Lo, Hi-Lo-Open-Close, Candle, Polar,
Radar, and Area Radar. Polar, Radar, and Area Radar are new to JClass Chart;
details about these new charting types are included in the New Chart Types and
Special Chart Properties chapter.

It is also possible to simulate more specialized types of charts using one of these basic
types.

Use the ChartType property to set the chart type for one ChartDataView. Each data
view managed by the chart has its own chart type. The following table lists basic
information about each chart type, including the enumeration that sets that type and
the data layouts it can display (see the next section for an introduction to data).

Chart Type Single
X-series

Multiple
X-series Notes

Plot
Draws each series as connected points of data.
� Series appearance determined by chart style line color,

symbol shape, size, and color properties

Scatter Plot
Draws each series as unconnected points of data.
� Series appearance determined by chart style symbol

shape, size, and color properties

Bar
Draws each series as a bar in a cluster. The number of
clusters is the number of points in the data. Each cluster
displays the nth point in each series.
� X-axis generally annotated using Point labels
� Series appearance determined by chart style fill color

and image properties
� 3D effect available using depth, elevation, and rotation

properties
10 Part I � Using JClass Chart

Stacking Bar
Draws each series as a portion of a stacked bar cluster, the
number of clusters being the number of data points. Each
cluster displays the nth point in each series. Negative Y-
values are stacked below the X-axis.
� X-axis generally annotated using Point labels
� Series appearance determined by chart style fill color

property
� 3D effect available using depth, elevation, and rotation

properties

Area
Draws each series as connected points of data, filled below
the points. Each series is layered over the preceding series.
� Series appearance determined by chart style fill color

property

Stacking Area
Draws each series as connected points of data, filled below
the points. Places each Y-series on top of the last one to
show the area relationships between each series and the
total.
� Series appearance determined by chart style fill color

property

Pie
Draws each series as a slice of a pie. The number of pies is
the number of points in the data (values below a certain
threshold can be grouped into an other slice). Each pie
displays the nth point in each series.
� Pies are annotated with Point labels only
� Series appearance determined by chart style fill color

property
� 3D effect available using depth and elevation properties

Hi-Lo
Draws two series together as a “high-low” bar. The points
in each series define one portion of the bar:
1st series — points are the “high” value
2nd series — points are the “low” value

� Appearance determined by chart style line color
property in the first series of each pair

Chart Type Single
X-series

Multiple
X-series Notes
Chapter 1 � JClass Chart Basics 11

Hi-Lo-Open-Close
Similar to Hi-Lo, but draws four series together as a “high-
low-open-close” bar. The additional series’ points make up
the other components of the bar:
3rd series – points are the “open” value
4th series – points are the “close” value

� Appearance determined by chart style line color and
symbol size properties in the first series of each set

Candle
A special type of Hi-Lo-Open-Close chart; draws four
series together as a “candle” bar.
� Simple candle appearance determined by chart style

line color, fill color, and symbol size properties in the
first series of each set

� Complex candle appearance determined by different
chart style properties from each series of each set

Polar
Draws each series as connected points of data on a polar
coordinate system (theta,r). X-values represent the amount
of rotation and Y-values are the distance from the origin.
� When using Array data, X-values are shared across

series
� X-axis bounds cannot be set; Y-axis bounds cannot be

set inside the data extents
� Appearance determined by ChartStyles’ line and

symbol properties of each series

Radar
Draws each series as connected points along radar “sticks”
spaced equally apart. The nth stick charts the Y-value of
the nth point in each series.
� X-axis annotated with Point-labels or integer values
� Appearance determined by ChartStyles’ line and

symbol properties of each series

Area Radar
Draws each series as connected points of data, filled inside
the points. The points are the same as they would be for a
Radar chart. Each series is drawn “on top” of the preceding
series.
� X-axis annotated with Point-labels or integer values
� Appearance determined by ChartStyles’ fill and line

properties

Chart Type Single
X-series

Multiple
X-series Notes
12 Part I � Using JClass Chart

1.3 Loading Data
Data is loaded into a chart by attaching one or more chart data sources to it. A chart
data source is an object that takes real-world data and puts it into a form that
JClass Chart can use. Once your data source is attached, you can chart the data in a
variety of ways.

Several stock (built-in) data sources are provided with JClass Chart, enabling you to
read data from an input stream, a file, a URL, databases, and HTML applet <PARAM>
tags. Loading data from a database is called ‘data binding’. You can also create your
own data sources. See the Data Sources on page 117 for more information on loading
data, data binding, and creating your own data sources.

1.4 Setting and Getting Object Properties
There are four ways to set (and retrieve) JClass Chart properties:

1. By calling property set and get methods in a Java program

2. By specifying applet properties in an HTML file

3. By using a Java IDE at design-time (JavaBeans)

4. By using the Chart Customizer at run-time

Each method changes the same chart property. This manual therefore uses properties
to discuss how features work, rather than using the method, Customizer tab, or
HTML parameter you might use to set that property.

Note: In most cases, you need to understand the chart’s object containment
hierarchy to access its properties. Use the object containment diagram later in this
chapter to determine how to access the properties of an object.

1.4.1 Setting Properties with Java Code
Every JClass Chart property has a set and get method associated with it. For
example, to retrieve the value of the AnnotationMethod property of the first X-axis,
the getAnnotationMethod() method is called:

 method = c.getChartArea().getXAxis(0).getAnnotationMethod();

To set the AnnotationMethod property of the same axis:

 c.getChartArea().getXAxis(0).setAnnotationMethod(
 JCAxis.POINT_LABELS);

These statements navigate the objects contained in the chart by retrieving the values
of successive properties, which are contained objects. In the code above, the value of
the ChartArea property is a JCChartArea object. The chart area has an XAxis
property, the value of which is a collection of JCAxis objects. And the axis has the
desired AnnotationMethod property.

For detailed information on the properties available for each object, consult the
online API reference documentation. The API is automatically installed when you
install JClass and is found in the JCLASS_HOME/docs/api/ directory.
Chapter 1 � JClass Chart Basics 13

../api/index.html

1.4.2 Setting Applet Properties in an HTML File

Another way to set chart properties, particularly appropriate for applets, is in an
HTML file. Applets built with JClass Chart automatically parse applet <PARAM> tags
and set the chart properties defined in the file. (A pre-built applet called
JCChartApplet.class is provided with JClass Chart.) Even standalone Java applications
can save the values of chart properties to an HTML file, which can serve as a useful
debugging tool.

Using HTML to set properties has the following benefits:

� Speed — see the effect of different property values quickly without recompiling.

� Flexibility — use a single applet class to create many different kinds of charts
simply by varying HTML properties; end-users can modify HTML properties to
suit their own needs.

Chart properties are coded in HTML as applet <PARAM> tags. The NAME element of
the <PARAM> tag specifies the property name; the VALUE element specifies the
property value to set.

This line of code
<PARAM name="chart.dataFile" value="sample_1.dat">
in the following example HTML file supplies the chart’s data in the applet.

<HTML>
<HEAD>
<TITLE>Sample Plot Chart</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFCC">

<CENTER><H2>Sample Plot Chart</H2></CENTER>
<P>
<HR COLOR=CC3333>
<P>
<BLOCKQUOTE>
Simple plot chart example.
</BLOCKQUOTE>
<CENTER>
<P>
<APPLET CODEBASE="../../.." WIDTH=400 HEIGHT=300
CODE="com/klg/jclass/chart/applet/JCChartApplet.class">
<PARAM name="chart.dataFile" value="sample_1.dat">
<PARAM name="chart.data.chartType" value="Plot">
<PARAM name="chart.data.series1.label" value="Ser. 1">
<PARAM name="chart.data.series1.symbol.shape" value="triangle">
<PARAM name="chart.data.series2.label" value="Ser. 2">
<PARAM name="chart.data.series2.symbol.shape" value="box">
<PARAM name="chart.data.series3.label" value="Ser. 3">
<PARAM name="chart.data.series3.symbol.shape" value="dot">
<PARAM name="chart.legend.visible" value="true">
<PARAM name="chart.legend.borderType" value="plain">
<PARAM name="chart.yaxis.min" value="5">
<PARAM name="chart.yaxis.max" value="25">
<PARAM name="chart.yaxis.precision" value="0">
<PARAM name="chart.yaxis.tickSpacing" value="2.5">
<PARAM name="chart.xaxis.precision" value="0">
</APPLET>
14 Part I � Using JClass Chart

<P>
<I>More Applet Examples...</I>
</CENTER>
<!-- copyright information added -->
<P>
<HR COLOR=CC3333>
<P>
<P>Copyright©

1997-2002 Sitraka
</BODY>
</HTML>

The easiest way to create a set of HTML properties is to use the JClass Chart
Customizer to save the property values to an HTML file. For more details, see the
The Chart Customizer section in this chapter. A full listing of the syntax of
JClass Chart properties when used in HTML files can be found in Appendix C,
HTML Property Reference. Many example HTML files are located in the
JCLASS_HOME/examples/chart/applet/ directory.

1.4.3 Setting Properties with a Java IDE at Design-Time

A JClass Chart Bean can be used with a Java Integrated Development Environment
(IDE), and its properties can be manipulated at design-time. Consult your IDE’s
documentation for details on how to load third-party Bean components into the IDE.

You can also refer to the JClass and Your IDE chapter in the Getting Started Guide.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find
the property you want to set in this list and edit its value. Again, consult your IDE’s
documentation for complete details.
Chapter 1 � JClass Chart Basics 15

../getstarted/index.html
../getstarted/getstarted-5.html

1.4.4 Setting Properties Interactively at Run-Time

If enabled by the developer, end-users can manipulate property values on a chart
running in your application. Clicking a mouse button launches the JClass Chart
Customizer. The user can navigate through the tabbed dialogs and edit the
properties displayed.

For details on enabling and using the Customizer, see The Chart Customizer later in
this chapter.

1.5 Other Programming Basics

Working with Object Collections
Many chart objects are organized into collections. For example, the chart axes are
organized into the XAxis collection and the YAxis collection. In Beans terminology,
these objects are held in indexed properties.

To access a particular element of a collection, specify the index that uniquely
identifies this element. For example, the following code changes the maximum value
of the first X-axis to 25.1:

 c.getChartArea().getAxis(0).setMax(25.1);

Note that the index zero refers to the first element of a collection. Also, note that by
default, JCChartArea contains one element in XAxis and one in YAxis.

Also note that for a Polar, Radar, and Area Radar chart, there can be only one Y-axis
and one X-axis.

Calling Methods
To call a JClass Chart method, access the object that defines the method. For
example, the following statement uses the coordToDataCoord() method, defined by
the ChartDataView collection, to convert the location of a mouse click event in pixels
to their equivalent in data coordinates:

 JCDataCoord dc = c.getDataView(0).coordToDataCoord(10,15);

Details on each method can be found in the API documentation for each class.
16 Part I � Using JClass Chart

../api/index.html

1.6 JClass Chart Inheritance Hierarchy

The following provides an overview of class inheritance of JClass Chart.

Figure 2 Class hierarchy of the com.klg.jclass.chart package
Chapter 1 � JClass Chart Basics 17

1.7 JClass Chart Object Containment

When you create (or instantiate) a new chart, several other objects are also created.
These objects are contained in and are part of the chart. Chart programmers need to
traverse these objects to access the properties of a contained object. The following
diagram shows the object containment for JClass Chart.

Figure 3 Objects contained in a chart – traverse contained objects to access properties

JCChart (the top-level object) manages header and footer JComponent objects, a
legend (JCLegend), and the chart area (JCChartArea). The chart also contains a
collection of data view (ChartDataView) objects and can contain the
ChartLabelManager (JCChartLabelManager) which manages a collection of chart
label (JCChartLabel) objects.
18 Part I � Using JClass Chart

The chart area contains most of the chart’s actual properties because it is responsible
for charting the data. It also contains and manages a collection of X-axis (JCAxis)
objects and Y-axis (JCAxis) objects (one of each by default).

The data view collection contains objects and properties (like the chart type) that are
tied to the data being charted. Each data view contains a collection of series
(ChartDataViewSeries) objects, one for each series of data points, used to store the
visual display style of each series (JCChartStyle).

Note that chart does not own the data itself, but instead merely views on the data.
Each data view also contains a data source (ChartDataModel) object. The data is
owned by the DataSource object. This is an object that your application creates and
manages separately from the chart. For more information on JClass Chart’s data
source model, see Data Sources.

1.8 The Chart Customizer

The JClass Chart Customizer enables developers (or end-users if enabled by your
program) to view and customize the properties of the chart as it runs.

Figure 4 The JClass Chart Customizer

The Customizer can save developers a lot of time. Charts can be prototyped and
shown to potential end-users without having to write any code. Developers can
experiment with combinations of property settings, seeing results immediately in the
context of a running application, greatly aiding chart debugging.

1.8.1 Displaying the Chart Customizer at Run-Time

By default, the Customizer is disabled at run-time. To enable it, you need to set the
chart’s AllowUserChanges and Trigger properties, for example:

 chart.setAllowUserChanges(true);
 chart.setTrigger(0, new EventTrigger(InputEvent.META_MASK,
 EventTrigger.CUSTOMIZE);
Chapter 1 � JClass Chart Basics 19

To display the Customizer once it has been enabled, move the mouse over the chart
and click the secondary mouse button; that is, the button on your system that displays
popup menus, for example:

� Windows — Right mouse button

� UNIX — Middle mouse button

1.8.2 Editing and Viewing Properties

1. Select the tab that corresponds to the chart element that you want to edit. Tabs
contain one or more inner tabs that group related properties together. Select
inner tabs to narrow down the type of property you want to edit.

2. If you are editing an indexed property, select the specific object to edit from the
lists displayed in the tabs. The fields in the tab update to display the current
property values.

3. Select a property and edit its value.

Figure 5 Editing a sample chart with the Customizer

As you change property values, the changes are immediately applied to the chart and
displayed. You can make further changes without leaving the Customizer. However,
once you have changed a property the only way to “undo” the change is to manually
change the property back to its previous value.

To close the Customizer, close its window (the actual steps differ for each platform).
20 Part I � Using JClass Chart

1.9 Internationalization
Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have
been internationalized.

Localization is the process of making internationalized software run appropriately in
a particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready
for localization. Thus, while localization stubs are in place for JClass, this step must
be implemented by the developer of the localized software. These Strings are in
resource bundles in every package that requires them. Therefore, the developer of
the localized software who has purchased source code should augment all .java files
within the /resources/ directory with the .java file specific for the relevant region; for
example, for France, LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain
the translated French versions of the Strings in the source LocaleInfo.java file. (Usually
the file is called LocaleInfo.java, but can also have another name, such as
LocaleBeanInfo.java or BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles
for their own locale. Developers should check every package for a /resources/
directory; if one is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/products/jdk/1.2/docs/guide/internat/index.html.
Chapter 1 � JClass Chart Basics 21

http://java.sun.com/products/jdk/1.2/docs/guide/internat/index.html

22 Part I � Using JClass Chart

2
New Chart Types and

Special Chart Properties
New Chart Type: Polar Charts � New Chart Type: Radar Charts

New Chart Type: Area Radar Charts � JCPolarRadarChartFormat Class

Special Bar Chart Properties � Special Pie Chart Properties

Special Area Chart Properties � Hi-Lo and Candle Charts

JClass Chart now includes three new charting types: Polar, Radar, and Area Radar.
In this chapter, these new chart types are discussed and special features of chief
JClass Chart charting types are outlined.

2.1 New Chart Type: Polar Charts

A polar chart draws the x and y
coordinates in each series as
(theta,r), where theta is amount of
rotation from the x origin and r is
the distance from the y origin.
theta may be specified in degrees
(default), radians, or gradians.
Because the X-axis is a circle, the
X-axis maximum and minimum
values are fixed.

Using ChartStyles, you can
customize the line and symbol
properties of each series.
23

2.1.1 Background Information for the Polar Charts

In order to work efficiently with Polar charts, you should understand the following
basic concepts.

Theta
Theta (θ), which is the angle from the X-axis origin, is measured in a
counterclockwise direction. In cartesian (rectangular) X and Y plots, theta
“translates” to the X-axis.

r value
r represents the distance from the Y-axis origin. In cartesian (rectangular) X and Y
plots, r “translates” to the Y-axis. Multiple r values are allowed.

Angles
Angles can be measured in degrees, radians, or gradians.

X and Y Values in Polar Charts
24 Part I � Using JClass Chart

2.1.2 Setting the Origin

All angles are relative to the origin base angle.

The position of the X-axis origin is determined by the origin base angle. The
OriginBase property is a value between 0 and 360 degrees (if the angle unit is
degrees).

In the Property Editor, the OriginBase property is located on the DataView tab’s
General tab’s Polar/Radar inner tab.

The Y-axis angle is the angle that the Y-axis makes with the origin base.

The origin base angle is set to 0o by default. The Y-axis angle is set to 0o to the origin
base by default.

You can change the origin base angle, the Y-axis angle, or both.
Chapter 2 � New Chart Types and Special Chart Properties 25

2.1.3 Data Format
The data format for Polar charts is either:

� general – (x,y) for every series; or

� array (only one x value).

The x array contains the theta values; the y array contains the r values. For array
data, the x array represents a fixed theta value for each point.

For more information on general and array data, please see the discussion in
Loading Data From a File.

2.1.4 PolarChartDraw class

The PolarChartDraw class (which extends ChartDraw) is a drawable object for Polar
charts. This object is used for rendering a Polar chart based on data contained in the
dataObject.

The default constructor is PolarChartDraw().

There are two key methods in this class:

� recalc() – recalculates the extents of related objects; and

� draw() – draws related objects and takes as its parameter the graphics context to
use for drawing.
26 Part I � Using JClass Chart

2.1.5 Full or Half-Range X-Axis

Use the HalfRange property to determine whether the X-axis is displayed as one
full range from 0 to 360 degrees (HalfRange is false) or two half-ranges: from –180
degrees to zero degrees to 180 degrees (HalfRange is true). In interval notation the
range would be [0,360) when HalfRange is false and (–180, 180] when HalfRange is
true. The default value for the HalfRange property is false.

This property is exclusive to Polar charts.

The HalfRange property is located on the DataView tab’s General tab’s
Polar/Radar inner tab on the Property Editor.

2.1.6 Allowing Negative Values

Polar charts do not allow negative values for the Y-axis unless the Y-axis is reversed.
A negative radius is interpreted as a positive radius rotated 180 degrees.
Thus (theta, r) = (theta +180, –r)

2.1.7 Gridlines

Polar charts allow for gridlines to be turned on and off.

Use the JCAXIS.setGridVisible() method to show or hide grid lines. The default is
off.

For Polar charts, Y-gridlines will be circular while X-grid lines will be radial lines
from the center to the outside of the plot.

Half-range is on Half-range is off
Chapter 2 � New Chart Types and Special Chart Properties 27

../api/com/klg/jclass/chart/JCAxis.html#setGridVisible(boolean)

2.2 New Chart Type: Radar Charts

A Radar chart plots data as a
function of distance from a central
point. A line connects the data
points for each series, forming a
polygon around the chart center.

A Radar chart draws the y value in
each data set along a radar line (the
x value is ignored). If the data set
has n points, then the chart plane is
divided into n equal angle
segments, and a radar line is drawn
(representing each point) at 360/n
degree increments. By default, the
radar line representing the first
point is drawn horizontally (at
0 degrees).

Radar charts permit easy visualization of symmetry or uniformity of data, and are
useful for comparing several attributes of multiple items. Although Radar charts look
as if they have multiple Y-axes, they have only one; hence, you cannot change the
scale of just one spoke.

Using ChartStyles, you can customize the line and symbol properties of each series.

2.2.1 Background Information for Radar Charts

An example of the x and y values of a Radar chart is shown below; in this case, there
are seven x values and three series of y values.
28 Part I � Using JClass Chart

2.2.2 Data Format
A Radar chart uses only array data. For more information on array data, please see
the discussion in Loading Data From a File.

2.2.3 RadarChartDraw Class

The RadarChartDraw class (which extends PolarChartDraw) is a drawable object for
radar charts. This object is used for rendering a radar chart based on data contained
in the dataObject.

The default constructor is RadarChartDraw().

There are two key methods in this class:

� recalc() – recalculates the extents of related objects; and

� draw() – draws related objects and takes as its parameter the graphics context to
use for drawing.

2.2.4 Gridlines

Radar lines are represented by the X-axis gridlines. You may choose normal
gridlines (circular) or “webbed” gridlines. As with other chart types, gridlines may be
displayed or hidden (default is hidden).

Circular gridlines Webbed gridlines

Data Layout:
Array only

Symbol style
(SymbolStyle)

Point-labels
X-axis annotation
Chapter 2 � New Chart Types and Special Chart Properties 29

2.3 New Chart Type: Area Radar Charts

An area radar chart draws the y
value in each data set along a radar
line (the x value is ignored). If the
data set has n points, the chart plane
is divided into n equal angle
segments, and a radar line is drawn
(representing each point) at 360/n
degree increments. Each series is
drawn “on top” of the preceding
series.

Area radar charts are the same as
Radar charts, except that the area
between the origin and the points is
filled.

Using ChartStyles, you can customize the fill and line properties of each series.

2.3.1 Background Information for Area Radar Charts

An example of the x and y values of an Area Radar chart is shown below; in this
case, there are seven x values and three series of y values.
30 Part I � Using JClass Chart

2.3.2 Data Format
An Area Radar chart uses only array data. For more information on array data,
please see the discussion in Loading Data From a File.

2.3.3 AreaRadarChartDraw Class

The AreaRadarChartDraw class (which extends RadarChartDraw) is a drawable
object for Area Radar charts. This object is used for rendering an Area Radar chart
based on data contained in the dataObject.

The default constructor is AreaRadarChartDraw().

2.3.4 Gridlines

Radar lines are represented by the X-axis gridlines. You may choose normal
gridlines (circular) or “webbed” gridlines. As with other chart types, gridlines may be
displayed or hidden (default is hidden).

Circular gridlines Webbed gridlines

Data Layout:
Array only

Fill color
(FillStyle)

Point-labels
X-axis annotation
Chapter 2 � New Chart Types and Special Chart Properties 31

2.4 JCPolarRadarChartFormat Class

The JCPolarRadarChartFormat class provides methods to get or set properties
specific to Polar, Radar, or Area Radar charts.

Origin Base
The origin base is the angle at which the theta axis origin is displayed. A value of 0
degrees corresponds to the 3 o’clock position.

Set or get the origin base using the following public methods:

public void setOriginBase(int units, double angle);
public double getOriginBase(int units);

The units parameter can have values of JCChartUtil.DEGREES,
JCChartUtil.RADIANS, or JCChartUtil.GRADS.

Alternatively, you can call the following methods without specifying an angle unit to
get or set the origin base. In this case, the angle units are assumed to be the current
value of the chart area’s angleUnit property:

public void setOriginBase(double angle);
public double getOriginBase();

Y-Axis Angle
The Y-axis angle is the angle at which the Y-axis is displayed relative to the theta axis
origin. Set or get the Y-axis angle using the following public methods:

public void setYAxisAngle(int units, double angle);
public double getYAxisAngle(int units);

Alternatively, you can call the following methods without specifying an angle unit to
get or set the Y-axis angle. In this case, the angle units are assumed to be the current
value of the chart area’s angleUnit property:

public void setYAxisAngle(double angle);
public double getYAxisAngle();

Half-Range Flag
If the half-range flag is set, the theta axis labels range from –180 to 180 degrees. Set
or get the half-range flag using the following methods:

public void setHalfRange(boolean fHalfRange);
public boolean isHalfRange();

RadarCircularGrid
The isRadarCircularGrid property is specific to Radar and Area Radar charts. If
the circular grid flag is set, y grid lines will be circular; otherwise, the y grid will be
webbed. Set or get the isRadarCircularGrid property using the following methods:

public void setRadarCircularGrid(boolean fCircular);
public boolean isRadarCircularGrid();
32 Part I � Using JClass Chart

2.5 Special Bar Chart Properties

Bar charts display each point as one bar in a cluster. There are several properties
defined in JCBarChartFormat that control exactly how the bars are spaced and
displayed. Use the getChartFormat(JCChart.BAR)() method to retrieve and set
these properties.

Cluster Overlap
Use the bar ClusterOverlap property to set the amount that bars in a cluster overlap
each other. The default value is 0. The value represents the percentage of bar
overlap. Negative values add space between bars and positive values cause bars to
overlap. Valid values are between -100 and 100. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).setClusterOverlap(50)

Figure 6 Negative and positive bar cluster overlap

Cluster Width
Use the bar ClusterWidth property to set the space used by each bar cluster. The
default value is 80. The value represents the percentage available space, with valid
values between 0 and 100. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).setClusterWidth(100)

Figure 7 Setting different bar cluster widths
Chapter 2 � New Chart Types and Special Chart Properties 33

100-Percent Stacking Bar Charts
The Y-axes of stacking bar charts can display a percentage interpretation of the bar
data using the 100Percent property. When set to true, each stacked bar’s total Y-
values represents 100%. The Y-value of each bar is interpreted as its percentage of
the total. This property has no effect on bar charts. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).set100Percent(true)

2.6 Special Pie Chart Properties

Pie charts are quite different from the other chart types. They do not have the
concept of a two-dimensional grid or axes. They also introduce a special category
called “Other”, into which all data values below a certain threshold can be grouped.

You can customize your pie charts with the properties of JCPieChartFormat. The
following code snippet shows the syntax for setting JCPieChartFormat properties:

JCPieChartFormat pcf = (JCPieChartFormat) arr.getChartFormat();
pcf.setOtherLabel("Other Bands");
pcf.setThresholdValue(10.0);
pcf.setThresholdMethod(JCPieChartFormat.PIE_PERCENTILE);
pcf.setSortOrder(JCPieChartFormat.DATA_ORDER);
pcf.setStartAngle(90.0);

2.6.1 Building the “Other” Slice

Pie charts are often more effective if unimportant values are grouped into an “Other”
category. Use the ThresholdMethod property to select the grouping method to use.
SLICE_CUTOFF is useful when you know the data value that should be grouped into
the “Other” slice. PIE_PERCENTILE is useful when you want a certain percentage of
the pie to be devoted to the “Other” slice.
34 Part I � Using JClass Chart

Figure 8 Three JClass Charts illustrating how the “Other” slice can be used

Use the MinSlices property to fine-tune the number of slices displayed before the
“Other” slice. For example, when set to 5, the chart tries to display 5 slices in total.
This means that, if there is an “Other” slice, the chart will display 4 slices and the
“Other” slice; if there is no “Other” slice, the chart will display 5 or more slices.

2.6.2 “Other” Slice Style and Label

The OtherStyle property allows access to the ChartStyle used to render the
“Other” slice. Use FillStyle’s Pattern and Color properties to define the
appearance of the Other slice.

Use the OtherLabel property to change the label of the “Other” slice.
Chapter 2 � New Chart Types and Special Chart Properties 35

2.6.3 Pie Ordering

Use the SortOrder property to specify whether to display slices largest-to-smallest,
smallest-to-largest, or the order they appear in the data.

2.6.4 Start Angle

The position in the pie chart where the first pie slice is drawn can be specified with
the StartAngle property. A value of zero degrees represents a horizontal line from
the center of the pie to the right-hand side of the pie chart; a value of 90 degrees
represents a vertical line from the center of the pie to the top-most point of the pie
chart; a value of 180 degrees represents a horizontal line from the center of the pie to
the left-hand side of the pie chart; and so on. Slices are drawn clockwise from the
specified angle. Values must lie in the range from zero to 360 degrees. The default
value is 135 degrees.

2.6.5 Exploded Pie Slices

It is possible to have individual slices of a pie “explode” (that is, detach from the rest
of the pie). Please note that exploded slices are not available in 3D pie charts.

Two properties of JCPieChartFormat are responsible for this function: ExplodeList
and ExplodeOffset.

ExplodeList specifies a list of exploded pie slices in the pie charts. It takes pts as a
parameter, which is composed of an array of Point objects. Each point object
contains the data point index (pie number) in the x value and the series number (slice
index) in the y value, specifying the pie slice to explode. To explode the “other” slice,
the series number should be OTHER_SLICE. If null, no slices are exploded.

ExplodeOffset specifies the distance a slice is exploded from the center of a pie
chart. It takes off as a parameter, which is the explode offset value.

The following code sample shows how ExplodeList and ExplodeOffset can be used
to set the list of exploded slices.

Point[] exList = new Point[3];
exList[0] = new Point(0, 0);
exList[1] = new Point(1, 5);
exList[2] = new Point(2, JCPieChartFormat.OTHER_SLICE);
pcf.setExplodeList(exList);
pcf.setExplodeOffset(10);

The following code sample shows how to set up a pick listener such that when a user
clicks on an individual pie slice, that slice explodes (and then implodes if the user
clicks on it again):

public void pick(JCPickEvent e)
{
JCDataIndex di = e.getPickResult();
if (di == null) return;
Object obj = di.getObject();
ChartDataView vw = di.getDataView();
ChartDataViewSeries srs = di.getSeries();
int slice = di.getSeriesIndex();
36 Part I � Using JClass Chart

int pt = di.getPoint();
int dist = di.getDistance();
if (vw != null && slice != -1) {
JCPieChartFormat pcf = (JCPieChartFormat)vw.getChartFormat();
Point[] exList = pcf.getExplodeList();
if (exList == null) return;
// implode existing exploded slices
for (int i = 0; i < exList.length; i++) {

if ((exList[i].x == pt) && (exList[i].y == slice)) {
Point[] newList = new Point[exList.length - 1];
for (int j = 0; j < i; j++)

newList[j] = exList[j];
for (int j = i; j < newList.length; j++)

newList[j] = exList[j + 1];
pcf.setExplodeList(newList);
return;

}
}
// explode new slice
Point[] newList = new Point[exList.length + 1];
for (int j = 0; j < exList.length; j++)

newList[j] = exList[j];
newList[exList.length] = new Point(pt, slice);
pcf.setExplodeList(newList);

}
}

The full code for this program can be found in JCLASS_HOME/examples/chart/
interactions/. For more information on pick, see Using Pick and Unpick on page 170.

2.7 Special Area Chart Properties

Similar to the stacking bar type, a stacking area chart is provided in JClass Chart.
To see an example of a stacking area chart, launch the Area demo from
JCLASS_HOME/demos/chart/area/.

Stacking Area Charts
A stacking area chart places each Y-series on top of the last. This shows the area
relationships between each series and the total. The following example shows the
same set of data as displayed by stacking area and area types:

Chapter 2 � New Chart Types and Special Chart Properties 37

To create a stacking area chart, set the ChartType property to
JCChart.STACKING_AREA, as follows:

dataView.setChartType(JCChart.STACKING_AREA);

100-Percent Stacking Area Charts
When 100Percent property is set to true, the Y-axes display as an area percentage of
the total. The top of the chart is 100% (the total of all Y-values).

Use the following syntax to display data in 100-Percent mode:

((JCAreaChartFormat)dataView.getChartFormat()).set100Percent(true)

2.8 Hi-Lo and Candle Charts
JClass Chart’s Hi-Lo, Hi-Lo-Open-Close, and Candle financial chart types use the Y-
values in multiple series to construct each “bar”. Hi-Lo charts use every two series
and Hi-Lo-Open-Close and candle charts use every four series. Each series defines a
specific portion of the bar:

� First series — High value
� Second series — Low value
� Third series (if needed) — Open value
� Fourth series (if needed) — Close value

Figure 9 Simple Candle chart displayed by stock demo

38 Part I � Using JClass Chart

It is useful to think of each group of series as one “logical series”. But note that most
JClass Chart properties or methods that use a series (such as chart labels attached by
DataIndex) use the actual series index.

Hi-Lo-Open-Close Charts
When the chart type is JCChart.HILO_OPEN_CLOSE, several properties defined in
JCHLOCChartFormat control how open and close ticks are displayed:

Customizing ChartStyles
Because these chart types use multiple series for each “row” of Hi-Lo or Candle bars,
it is difficult to determine which chart style specifies the display attributes of a
particular row of bars. To make programming the chart styles of financial charts
easier, JClass Chart provides several methods that retrieve and set the style for a
logical series. These methods are defined in the JCHiloChartFormat,
JCHLOCChartFormat and JCCandleChartFormat classes. Each get method returns the
JCChartStyle object used for the logical series you specify. You can customize the
properties in this returned object and then use the appropriate set method to apply
them to the same logical series in the chart.

Most of the financial chart types use only one or two JCChartStyle properties. The
following table lists the properties used by each chart type (see Chart Styles on page
153 for more information on chart styles):

For every financial chart type except complex candle, the actual chart style used is
that of the first series.

ShowingOpen Displays or hides open tick marks

ShowingClose Displays or hides close tick marks

OpenCloseFullWidth Displays open/close ticks across both sides of the bar.
This is useful for creating error bar charts.

LineColor SymbolSize

Hi-Lo

Hi-Lo-Open-Close

Candle (simple)

Candle (complex) see below
Chapter 2 � New Chart Types and Special Chart Properties 39

Simple and Complex Candle Charts
You can choose between a simple and complex candle chart display using the
Complex property defined in JCCandleChartFormat.

When set to false, the chart style from just one series (the first) determines the
appearance of the candle. The table above shows the properties used. A rising stock
price is indicated by making the candle transparent. A falling stock price displays in
the color specified by FillColor.

Complex candle charts (Complex is true), use elements of the chart styles of all four
series, providing complete control over every visual aspect of the candles. The
convenience methods defined in JCCandleChartFormat make it easy to retrieve/set
the style that controls the appearance of a particular aspect of the candles.

The following lists the JCChartStyle properties that control each aspect of a
complex candle, along with which of the four chart styles is used:

� Hi-Lo line — LineColor property (first chart style)

� Rising price candle color and width — FillColor and SymbolSize properties
(second chart style)

� Falling price candle color and width — FillColor and SymbolSize properties
(third chart style)

� Candle outline — LineColor property (fourth chart style)

Example Code
The following code sets the rising and falling candle styles of a complex candle chart:

 JCChartStyle chartStyle;
 JCCandleChartFormat candleFormat;

 // Set candle to complex type so we can change colors

candleFormat=(JCCandleChartFormat)chart.getDataView(1).getChartFormat();

 candleFormat.setComplex(true);

 // Change rising candle color
 chartStyle = candleFormat.getRisingCandleStyle(0);
 chartStyle.setLineColor(Color.green);
 chartStyle.setFillColor(Color.red);

 // Change falling candle color
 chartStyle = candleFormat.getFallingCandleStyle(0);
 chartStyle.setLineColor(Color.green);
 chartStyle.setFillColor(Color.yellow);

Two demo programs included with JClass Chart illustrate creating financial charts:
the stock demo, located in JCLASS_HOME/demos/chart/stock/ , and the financial
demo, located in JCLASS_HOME/demos/chart/financial/.
40 Part I � Using JClass Chart

3
SimpleChart Bean Tutorial

Introduction to JavaBeans

SimpleChart Bean Tutorial

3.1 Introduction to JavaBeans

JClass Chart components are JavaBean-compliant. The JavaBeans specification
makes it very easy for a Java Integrated Development Environment (IDE) to
“discover” the set of properties belonging to an object. The developer can then
manipulate the properties of the object easily through the graphical interface of the
IDE when constructing a program.

The three main characteristics of a Bean are:

� the set of properties it exposes

� the set of methods it allows other components to call; and

� the set of events it fires

Properties control the appearance and behavior of the Bean. Bean methods can also
be called from other components. Beans fire events to notify other components that
an action has happened.

3.1.1 Properties

“Properties” are the named method attributes of a class that can affect its appearance
or behavior. Properties that are readable have a “get” (or “is” for booleans) method,
which enables the developer to read a property’s value, and those properties that are
writable have a “set” method, which enables a property’s value to be changed.

For example, the JCAxis object in JClass Chart has a property called
AnnotationMethod. This property is used to control how an axis is labelled. To set
the property value, the setAnnotationMethod() method is used. To get the
property value, the getAnnotationMethod() method is used.
41

For complete details on how JClass Chart’s object properties are organized, see
JClass Chart Object Containment on page 18 and Setting and Getting Object
Properties on page 13 in the JClass Chart Basics chapter.

Setting Bean Properties at Design-Time
One of the features of any JavaBean component is that it can be manipulated
interactively in a visual design tool (such as a commercial Java IDE) to set the initial
property values when the application starts. Consult the IDE documentation for
details on how to load third-party Bean components into the IDE.

You can also refer to the JClass and Your IDE chapter in the Getting Started Guide.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find
the property you want to set in this list and edit its value. Again, consult the IDE’s
documentation for complete details.

3.2 SimpleChart Bean Tutorial

This tutorial guides you through the development of an application that uses
SimpleChart to chart the financial information of “Michelle’s Microchips”. It is a
good starting point for learning basic JClass Chart features. To explore more
advanced features of JClass Chart, however, we recommend that you use the
MultiChart Bean.

The tutorial does not cover all of the properties available in SimpleChart. For a
complete reference, see the Bean Reference chapter. The screen captures have all
been taken from Sun’s BeanBox and will differ slightly from your IDE’s appearance.

3.2.1 Steps in this Tutorial

This tutorial has eight steps:

1. Create a new application in your IDE and add a container

2. Put a SimpleChart object into the container

3. Load the data for Michelle’s Microchips

4. Add a header, footer, and legend

5. Add point labels to the X-axis

6. Change the background color to white

7. Set the chart type to bar, and add 3D effects

8. Compile and run the application
42 Part I � Using JClass Chart

../getstarted/index.html
../getstarted/getstarted-5.html

Outliner
Step 1: Create the ‘Michelle’ Application
Create a new application in your IDE and add a container to hold a SimpleChart
object. In most IDEs this will be a panel. See your IDE’s documentation for
instructions on creating a basic application and adding a container.

Step 2: Put a Chart Object into the Container
With the container displayed in design mode, click the SimpleChart icon and place a
SimpleChart object into the container’s area. See your IDE’s documentation for
details on placing objects into a container. The SimpleChart icon looks like this:

In your container object, you should now see a basic chart area with an X- and
Y-axis, like this:

If you open your property list (the window that displays the Bean’s properties) with
the SimpleChart area selected, you should see the property editors that are available
in SimpleChart.

Step 3: Load Data from a File
This tutorial uses data from a file named chart2.dat contained in the
JCLASS_HOME/examples/chart/intro/chart2.dat directory. To load chart2.dat into
SimpleChart, bring up the custom data source editor by clicking on the data
property:
Chapter 3 � SimpleChart Bean Tutorial 43

The data source editor provides two methods for loading data: editing data in the
text area, or loading data from a file. For Michelle’s Microchips, click the Load data
from a file radio button. Then, enter the full path name of chart2.dat in the File
Location field. After you click Done, you should see the data displayed in the chart
area as follows:

What’s in chart2.dat?
Chart2.dat has financial information for Michelle’s Microchips, formatted for the file
data source method of data loading. SimpleChart accepts only .dat files, or
modifications to the default data in the editor. For more information on creating a file
data source, see Loading Data from a File on page 118.

The content of chart2.dat is:

JClass Chart also has other Beans which allow you to chart data from a database
easily. See the Bean Reference chapter for more information.

ARRAY '' 2 4
'Q1' 'Q2' 'Q3' 'Q4'
'' 1.0 2.0 3.0 4.0
'Expenses' 150.0 175.0 160.0 170.0
'Revenue' 125.0 100.0 225.0 300.0
44 Part I � Using JClass Chart

Outliner
Step 4: Add a Header, Footer, and Legend
Enter “Michelle’s Microchips” in the headerText property editor and “1963
Quarterly Results” in the footerText property editor:

To add the legend, set the legendVisible property to true. The legend text is taken
from information in the data source. Notice how the plot area is resized to
accommodate the legend. You may have to resize your chart area to accommodate
the changes:

For more information on legend properties, see Legends on page 57.

Step 5: Add Point Labels to the X-axis
By default, SimpleChart annotates the axes with values. You can change the
annotation to show point labels or time labels.

For Michelle’s Microchips, change the X-axis annotation from values to point labels.
Do this by setting the xAxisAnnotationMethod property to Point_Labels:

You should now see “Q1”, “Q2”, “Q3”, and “Q4” on the X-axis. These labels are
contained in the chart2.dat file, and come up automatically when Point_Labels is
selected. For more information on axis annotation, see Axis Properties on page 51.
Chapter 3 � SimpleChart Bean Tutorial 45

Step 6: Change the Background Color
To change the background color to white, click the background property to bring up
your color editor:

The custom color editor used by your IDE will differ from the BeanBox. Select pure
white from the options on your color editor:

Step 7: Change to Bar Chart and add 3D Effects
You can select from 10 chart types using the chartType property editor (see Chart
Types on page 54 for a complete list). For Michelle’s Microchips, select the BAR type:

To add three-dimensional visuals to your chart, click the view3D property to bring up
the View3DEditor:

There are two main settings in the View3DEditor (below): depth, and combined
elevation and rotation. They are both set either by dragging the box in the editor
with a mouse or by typing in the value in the editable box next to these settings.
46 Part I � Using JClass Chart

Outliner
First, drag the square with your mouse until you have an Elevation of 45 and a
Rotation of 45, or simply type “45” in the editable box next to these settings. Second,
check the Change Depth box, and drag the red square until it has a depth of 31, or
simply type “31” in the editable box next to Depth. Click Done to set the changes:

Step 8: Compile and Run the Application
For the last step, compile and run the application. See your IDE’s documentation for
details. And that’s it! When you run the application, you should have a window with
a chart, displaying Michelle’s Microchips’ financial information. The following
example illustrates how the application appears when run:
Chapter 3 � SimpleChart Bean Tutorial 47

48 Part I � Using JClass Chart

4
Bean Reference

Choosing the Right Bean

Standard Bean Properties
Data-Loading Methods

This chapter is a reference for JClass Chart Beans and their properties. For basic
Bean concepts and a tutorial, see the SimpleChart Bean Tutorial on page 42.

4.1 Choosing the Right Bean

When creating new applications in an IDE, you can use MultiChart, SimpleChart,
or one of the data-binding Beans. Unless you are binding to a database, we
recommend using MultiChart, both for learning JClass Chart’s features and creating
new applications.

The MultiChart Bean
MultiChart is JClass Chart’s most powerful Bean. It contains a richer set of features
than previous Beans, highlighting the superiority of JClass Chart as a charting
application tool. Among its features are the ability to handle multiple data sources
and multiple axes. For more information, see the MultiChart chapter.

SimpleChart
SimpleChart was designed for quick chart development in any IDE environment.
It exposes the most commonly used charting properties, and presents them in easy-
to-use property editors. SimpleChart can load data from a file or a design-time
editor.

SimpleChart and the dat- binding Beans share a common set of properties that are
covered in this chapter. SimpleChart and the data-binding Beans only differ in how
they load data. Therefore, this chapter is divided into Standard Bean Properties and
Data-Loading Methods.
49

Data-Binding Beans
If you want to load data from a database, you will have to use one of the data-binding
Beans. In order to chart data from a database, your application must be able to
establish a connection, perform necessary queries on the data, and then put the data
into a chartable format. This type of database connectivity is often called ‘data
binding’.

There are data-binding Beans for JBuilder and for JClass DataSource.

Once you have set up your data handling for a specific Bean, you can then use the
Standard Bean Properties to customize your chart.

4.1.1 JClass Chart Beans

The following table shows all of the available JClass Beans and their uses:

4.1.2 JClass Chart Beans and JCChart

All JClass Chart Beans are subclasses of the main chart object, JCChart. This means
that the entire JClass Chart API is available to any developer using any of the Beans.

JClass Chart Bean Description

MultiChart The most powerful charting Bean.
� Chart data from two data sources and plot them

against multiple axes.
� Data sources can be a file, or data entered at

design-time. Also supports using Swing
TableModel objects as data sources.

� Compatible with all IDEs.

See the MultiChart chapter for complete details.

SimpleChart Charts data from a file or data entered at design-time.
Also supports a Swing TableModel object as a data
source. Compatible with all IDEs.

DSdbChart Binds a chart to JClass DataSource and chart data from
a database. Compatible with all IDEs and the BeanBox
(requires JClass DataSource Component).

JBdbChart Binds a chart to a JBuilder DataSet and chart data from
a database (requires Borland JBuilder 3.0+).
50 Part I � Using JClass Chart

Outliner
4.2 Standard Bean Properties

SimpleChart and the data-binding Beans (VBdbChart, JBdbChart, and DSdbChart)
have a set of standard properties that allow you to control the appearance and
behavior of your charts.

They only differ in the way they retrieve data. This section covers the standard
properties. See Data-Loading Methods on page 58 for information on data
management properties for the different Beans.

4.2.1 Axis Properties

JClass Chart Beans set up basic axis properties for you automatically, and adjust
these properties to your data. You can also customize your axes with the axes
property editors. You have control over the following axis properties:

� Axis Titles

� Annotation Method

� Axis Number Intervals

� Axis Range

� Axis Grids

� Axis Hiding

� Logarithmic Notation

� Axis Orientation

Axis Titles
Enter X- and Y-axis titles in the xAxisTitleText and yAxisTitleText property
editors:

Annotation Method
Set the annotation method for the axes using the xAnnotationMethod and
yAnnotationMethod editors. By default, Value annotation is used for both:
Chapter 4 � Bean Reference 51

Value_Labels notation can only be added programmatically or by using HTML
parameters, and is therefore, not very useful for Bean programming. The following
examples show the three applicable annotation methods as applied to the X-axis:

Axis Number Intervals
To specify the number interval on the axes, enter the interval into the
yAxisNumSpacing or xAxisNumSpacing property editors:

Axis Range
The axis number range is determined by the minimum and maximum values of the
axes. By default, these values are set automatically, based on the available data. You
can specify the range by using the xAxisMinMax and yAxisMinMax property editors.
Enter the minimum value on the left of the comma, and the maximum on the right:

Logarithmic Notation
You can specify that one or both of the axes are logarithmic by setting the
xAxisLogarithmic or yAxisLogarithmic properties to true:

Point_Labels Time_Labels Value
52 Part I � Using JClass Chart

Outliner
Hiding Axes
By default, both the X- and Y-axes are displayed. You can hide them by setting the
xAxisVisible or yAxisVisible properties to false. The following example hides
the Y-axis:

Showing Grids
Display grid lines for one or both axes by setting the xAxisGridVisible or
yAxisGridVisible properties to true. By default, the grids are hidden. The following
example sets both axes to display grid lines:

Axis Orientation
Axis orientation determines how the axes are positioned on the chart. By default, the
axes are positioned with the Y-axis left/vertical and the X-axis right/horizontal. Use
the axis orientation custom editor to change how your axes are oriented. To launch
the custom editor, click the axisOrientation property:

The axis orientation editor will illustrate the eight combinations. Select the desired
orientation and click Done.
Chapter 4 � Bean Reference 53

4.2.2 Chart Types

By default, JClass Chart Beans use the Plot chart type to display data. To change to
another type, use the chartType property editor. The following example selects the
PIE type:

Data Interpretation
The following examples show how data is displayed by the different chart types:

Area Bar Candle

HiLo Hilo_Open_Close Pie

Plot Scatter_Plot
Stacking_Area

Stacking_Bar
Polar

Area Radar

Radar
54 Part I � Using JClass Chart

Outliner
4.2.3 Display Properties

Font
Set the size and style of text on your chart by clicking the font property:

The font you choose will apply to all text on the chart simultaneously with the
exception of the header and footer. Note that the font editor that appears in your
IDE may be different from the example below. The following example sets the font
to Courier, Bold, 24 point, with the BeanBox font editor:

Note: Now 3 different font properties that work in the same way. Font affects all text
on the chart area and legend. Header font affects the header and Footer Font affects
the footer.

Foreground and Background Colors
Click the foreground and background properties to set the foreground and
background colors of your chart. A color editor will appear. By default, the colors are
black foreground and light-gray background:

Most IDEs have their own color editors that differ from the BeanBox. The following
example sets the background color to red:
Chapter 4 � Bean Reference 55

3D Effects
To add 3D effects to your chart, click the View3D property:

This will bring up the View3DEditor. There are two main settings in the
View3DEditor: depth, and combined elevation and rotation.

You can add 3D effects either by typing a value in the editable box next to the
Depth, Elevation, and Rotation settings, or by dragging the red square in the editor
until it has the desired Elevation and Rotation. Then, check the Change Depth
option box, and drag the red square until it has the Depth you want to see on your
chart; alternatively, simply type in the value in the editable box next to this setting.

The degree of depth, elevation, and rotation is displayed in numbers at the top of the
editor. Click Done to set the changes:

4.2.4 Headers and Footers

Add a header, footer, or both with the headerText and footerText property editors.
The following example sets both:

The font characteristics of the header and footer are determined by the Header Font
and Footer Font properties. See Display Properties on page 55 for more details.
56 Part I � Using JClass Chart

Outliner
4.2.5 Legends

You can add a legend, position it, and select its layout. The legend is set up from
information in the data source. For information on how to set up legend items in the
data source, see Data Formats on page 124.

Showing the Legend
To show the legend, set the legendVisible property to true:

Legend Placement
Specify where the legend will be anchored in the chart area by selecting a compass
direction from the legendAnchor property options. By default, legends are anchored
on the East. The following example anchors the legend North:

Legend Layout
Legend items can be laid out vertically or horizontally. By default the legend has a
vertical layout. To specify a horizontal layout, set the legendOrientation property to
Horizontal:
Chapter 4 � Bean Reference 57

4.3 Data-Loading Methods

This section covers the data-loading methods of SimpleChart and the data-binding
Beans. For MultiChart data-loading details, see the MultiChart chapter. Select the
Bean that best matches your data needs and follow the instructions on loading the
data for that Bean:

If you are using an IDE other than Borland JBuilder, and you want to connect to a
database, you will have to use JClass DataSource (see below). JBuilder users may still
want to use the JClass DataSource for data-binding instead of their IDE-specific
solutions.

JClass DataSource
JClass DataSource is a full data-binding solution. It is a robust, hierarchical, multiple-
platform data source that you can use to bind and query any JDBC-compatible
database. It can also bind to platform-specific data solutions in JBuilder.

JClass DataSource is available only in the JClass DesktopViews (which also contains
JClass Chart, JClass Chart 3D, JClass Elements, JClass Field, JClass HiGrid, JClass
JarMaster, JClass LiveTable, and JClass PageLayout). Visit http://www.sitraka.com for
information and downloads.

JClass Chart Bean Data Source & IDE Compatibility

SimpleChart � Formatted file or design-time editor
� Also supports using a Swing TableModel object

as the data source
� All IDEs

DSdbChart � Data binding
� All IDEs (requires JClass DataSource component)

JBdbChart � Data binding
� Borland JBuilder 3.0+
58 Part I � Using JClass Chart

http://www.sitraka.com

Outliner
4.3.1 SimpleChart: Loading Data from a File

There are two ways of loading data with the SimpleChart Bean: from a .dat file, or
by entering data directly into the custom editor. Both methods are managed by the
DataSourceEditor. To bring up the DataSourceEditor, click on the data property:

The DataSource Editor will appear (see below).

Loading Data from a .dat File
To load data from a file, click Load data from a file, enter the name of the file in
the File Location field, and click Done:

Specify the full path of the file. The file must be pre-formatted to the JClass Chart
Standard (see Data Sources). Sample data files are located in the
JCLASS_HOME/examples/intro/chart2.dat directory.

Editing the Default Data
You can use the data provided in the editor, as is, or you can modify it. To use
existing data, just check the Edit data in the text area radio button, and click
Done. Change data by deleting and inserting text in the area provided. Be careful to
preserve the punctuation surrounding the original text:
Chapter 4 � Bean Reference 59

The chart below shows how the default data appears as a plot. Notice where the
different elements are positioned. Each point on the X-axis is labelled with the
names specified in the default data. The name of each series of y-values appears in
the legend. The name of the data view is positioned directly above the legend.

In order for the default data to display this way, you must first set the
xAxisAnnotation property to Point_Labels, and the legendVisible property
to true.

4.3.2 SimpleChart: Using Swing TableModel Data Objects

Your (Swing) application may have the data you want to chart contained in a Swing
TableModel-type data object. You can use this object as your data source instead of
using the JClass Chart built-in data sources if your IDE supports a TableModel
editor.

Use the SwingDataModel property to specify an already-created Swing TableModel
object to use as the chart’s data source.

4.3.3 Data Binding in Borland JBuilder

Binding a chart to a database in JBuilder involves adding a database connection and
query functionality with JBuilder Components and then using JBdbChart to connect
to the dataset and chart the data. This section walks through these steps.

Database connection and querying are handled by JBuilder components. Our
coverage of these components is only intended as a guide. For detailed information
on JBuilder database connectivity, consult your JBuilder documentation.

Before proceeding, make sure you have:

� Borland JBuilder 3.0+

� JBdbChart Bean loaded in your JBuilder Palette. For details on how to load a
Bean, see the Getting Started Guide (available in HTML and PDF formats) or your
JBuilder documentation

� Database set up properly

� Basic SQL command knowledge
60 Part I � Using JClass Chart

../getstarted/index.html

Outliner
Step 1: Connect to a Database
Use JBuilder’s Database Bean to add a database connection. The icon is found under
the Data Express tab.

Add an instance to your frame. Then, use the connection property to specify the
URL of the database that you want to use.

Step 2: Query the Data
To query the database, add an instance of JBuilder’s QueryDataSet to your frame.
This Bean is found under the Data Express tab.

Select columns that you may want to chart with the query property editor. Each
column will represent a series of data, or point labels. For example, to select all of the
columns from a table named MotorVehicle_Sales, you would type a statement
similar to:

select * from MotorVehicle_Sales

You can include all columns at this step, and then use JBdbChart to choose which
ones to display later.

Step 3: Connect the Chart to the DataSet
With the database connection established and the query created, you can now use
JBdbChart to connect to the JBuilder DataSet and chart the data. JBdbChart’s data
binding properties are dataSet, and DataBindingMetaData.

Insert a JBdbChart into your frame.

Select a query from the dataSet property’s pull down menu. If the database
connection and query are set up properly with JBuilder components, there should be
one or more queries in the list.

You can now select the columns and range of data that will be displayed. Columns
that contain numeric data are considered ‘data series’, and can be plotted on a chart.
Chapter 4 � Bean Reference 61

Columns that have non-numeric data can be used for point labels on the X-axis.
Click the dataBindingConfig property to bring up the custom editor:

This editor allows you to set the columns and the data range of the chart. Click on
column names to select them (when they are highlighted, they are selected).

Potential series columns are numeric. The Potential point label column is non-
numeric.

You can either set the range to all data by checking the All rows box, or you can
specify a range using the Start row and End Row fields.

In order to display the point labels on the X-axis, you have to set the
xAxisAnnotationMethod property to Point_Labels. For more information,
see Axis Properties on page 51.

You should see your data in the design frame:
62 Part I � Using JClass Chart

Outliner
With your connection established, you can then use the Standard Bean Properties to
customize and enhance your chart. In the example above, a header, footer, axis title,
legend, point labels and 3D effects have been added.

4.3.4 Data Binding with JClass DataSource

The JClass DataSource manages all connection and query functionality for data
binding. After establishing a connection and query with JClass DataSource, you then
bind DSdbChart to JClass DataSource to chart the data.

The JClass DataSource package contains a number of Beans used for binding to
databases, including JCTreeData, and JCData. This section will illustrate the process
with the JCData Bean. DSdbChart uses the same method to connect to either Bean.
Consult your JClass DataSource documentation for details on their features and how
to use them.

To use this solution, you require the following:

� Sun’s BeanBox or any IDE

� JClass DataSource (available only in JClass DesktopViews. Visit
http://www.sitraka.com for information and downloads.

� DSdbChart loaded into the BeanBox or IDE. For details on how to load a Bean,
see the Getting Started Guide (available in HTML and PDF formats) or your
JClass DataSource documentation

� If you are using Windows, you will need to establish an ODBC database
connection. Set this in Control Panel > ODBC. If you are using
Windows 2000, establish an ODBC database connection via Control Panel >
Administrative Tools > Data Sources (ODBC). For more information on
runnning JClass DataSource examples, please see the readme file.

The following steps guide you through using DSdbChart to connect to JClass
DataSource. They are: connect to a database, query the data, and connect DSdbChart
to the JClass DataSource.

Step 1: Connect to a Database
Add a JCData instance to your design area. The icon looks like this

Click the nodeProperties property to bring up the NodePropertiesEditor.
Chapter 4 � Bean Reference 63

../../readme.html
http://www.sitraka.com
../getstarted/index.html

This editor manages all of the connection and query settings. The first thing you
have to do is set up a serialization file under the Serialization tab. This file saves
information and settings about the connection. You can then proceed to set up a
connection and query.

To set up a database connection, go to the DataModel > JDBC > Connection tab,
and specify the Server Name and Driver for the database you want to connect to. Test
the connection. If there are error messages, consult your JClass DataSource
documentation.

When your connection is successful, you can then proceed to set up a query.
64 Part I � Using JClass Chart

Outliner
Step 2: Query the Data
Click the Data Model > JDBC > SQL Statement tab to show the query options:

You can create your whole SQL query using mouse clicks. First, add a table, and
then create a query by selecting columns. When you are all finished, click
Set/Modify, and then Done.

Step 3: Connect a Chart to JClass DataSource
With your database connection established, you can then bind a chart to the data.
This is done using the dataBinding and DataBindingMetaData property editors.

First, add DSdbChart to your design area. The icon looks like this:

Click the dataBinding property to bring up the DataBindingEditor.
Chapter 4 � Bean Reference 65

If the connection in JClass DataSource is properly established, you should see one or
more data sources to select from:

Select a source and click Done.

You can now select the columns and range of rows to be displayed in the chart. To do
this, click the DataBindingConfig property to bring up the DataBindingConfig
custom editor:

There are two lists of columns:

� a “Potential point labels column” – a combo box containing the columns that can
be used for the X-axis point labels

� a “Potential series column” – a list comprising the numeric columns that can be
used as the Y series.
66 Part I � Using JClass Chart

Outliner
In order to display the point labels on the X-axis, set the xAxisAnnotationMethod
property to Point_Labels. For more information, see Axis Properties on page 51.

You can either set the range to all data by checking the All rows box, or you can
specify a range using the Start Point and End Point fields.

When you click Done, you should see the data displayed in the design area of the
Beanbox or IDE. Your data binding is complete.
Chapter 4 � Bean Reference 67

68 Part I � Using JClass Chart

5
MultiChart

Introduction to MultiChart � Getting Started with MultiChart

MultiChart Property Reference

5.1 Introduction to MultiChart

MultiChart is the next generation charting Bean from JClass Chart. It contains a
richer set of features than previous Beans, highlighting the superiority of JClass Chart
as a charting application tool.

The MultiChart icon:

Highlights of the MultiChart Bean

� Handles multiple data sources

� Plot data against multiple X- and Y-axes

� Fully customizable axes

� Extensive control of font, colors, borders, and styles for each chart element

5.1.1 Multiple Axes

MultiChart can have two x and two y axes, as in the example below:
69

Setting Properties on Multiple Axes
Axis properties can be set for each axis individually. At the top of each axis editor
you will see four radio buttons:

When a radio button is selected, all that follows below will apply to that axis.

5.1.2 Multiple Data Views

MultiChart allows you to load data from two different sources at the same time.
When loading data from two different sources, they are each assigned to a separate
data view.

By default, both data views are showing, but you can hide or reveal data views
depending on your application’s needs. Both sets of data can be mapped to the same
set of x and y axes, or, mapped to different axes.

5.1.3 Intelligent Defaults

MultiChart has a sophisticated set of dynamic default settings in the custom property
editors. You can override these defaults to suit your needs. When you override a
default value in a text editor, it becomes static, and will not automatically adjust
anymore.

Returning to Default Values
If you want to return to default settings in the custom editors after overriding them,
all you have to do is delete the contents of the changed field, and leave it blank. The
next time you bring the editor you will see that the automatic values have returned.

5.2 Getting Started with MultiChart

MultiChart has a sophisticated set of dynamic default settings that adjust to your
data and other settings. This means that you only have to make a minimum of
settings to have a respectable chart. The following list describes the most common
start-up tasks and the editors used for them:

� Load Data. To load data in the chart, use the DataSource editor. This editor
allows you to load data from one or two sources. There is also a default set of
data built-in that you can use to experiment with. Alternately, you can use a
Swing TableModel data object as the chart’s data source using the
SwingDataModel property.
70 Part I � Using JClass Chart

Outliner
� Select Chart Types. For each data view, you can select a chart type and the axes
that the data will be plotted against with the DataChart editor.

� Set BackGround Color. Use ChartAppearance to set the color of the chart
background.

� Set Axis Annotation. By default, MultiChart uses values to annotate the axes.
You can also use value labels, point labels, or time labels by setting the
annotation type with the AxisAnnotation editor.

� Add a Legend. Add a legend by checking the Visible box in the
LegendAppearance editor.

� Add a Header and Footer. To add a header, use HeaderText to add the text,
and then check the Visible box in HeaderAppearance. The footer is the same,
but uses the FooterText, and FooterAppearance editors

� Add Extra Axes. By default a standard X-Y axis set is displayed. If you require,
you can display a second X or Y axis. Display them with the AxisMisc editor’s
Visible property. Then use the many axis editors, such as AxisPlacement, to set
up and align the axes.

5.3 MultiChart Property Reference

The following property reference section covers all of MultiChart’s features.

5.3.1 Axis Controls

This group of editors sets up the axes. MultiChart has a sophisticated set of
automatic default values, that adjust to your data. This makes chart development fast
and easy. But, MultiChart is also extremely flexible, and every aspect of the axes can
be adjusted.

AxisAnnotation
With the AxisAnnotation editor, you can set the annotation type for each axis, and
control how they look. Axis annotations are numbers or text that appear along the
axes. Options in the Method menu are: Value, Time_Labels, Point_Labels, and
Value_Labels.
Chapter 5 � MultiChart 71

For each of the labelling methods, there is a corresponding editor that gives you
more control over the behavior and appearance. For Value, use AxisScale, for
Point_Labels, use AxisPointLabels, for Time_Labels, use, AxisTimeLabels, and for
Value_Labels, use, AxisValueLabels.

The following examples illustrate the different label types:

With the Rotation property, you can rotate the labels on the axis. The following
example shows Value_Labels, rotated by 270 degrees and with bold, 12pt font:

Gap controls the space between annotations. If, for example, you used point labels,
you could use the Gap property to make sure they have enough room to display
properly.

AxisGrid
Use the AxisGrid editor to set up grid lines on each of the axes. There are also
controls for color, line spacing, and line width of the grid lines.

Time_Labels Value Value_Labels
72 Part I � Using JClass Chart

Outliner
The following example sets X Axis 1 grid and Y Axis 1 grid to Visible with Spacing
= 1 and Width = 1 for the X Axis, and with Spacing = 1 and Width = 10 for the
Y Axis:

AxisOrigin
The AxisOrigin editor allows you to specify an origin by coordinates, or by
choosing an option from a pull down menu. By default axes origins are set
automatically, based on the available data.

To place the origin, you can select one of the locations from the pull-down menu,
such as Min, or Max. If you want to set the origin to a specific value on the axis,
select Value_Anchored from the menu and then enter the value in the Origin field:

The following example anchors the origin of Y Axis 1 at 20 (default data):

Note that, by default, X Axis 1 is placed at the origin of Y Axis 1. To override this
default, use the AxisPlacement editor.
Chapter 5 � MultiChart 73

AxisPlacement
Axis placement determines the placement of an axis in relation to another. By
default, this is set automatically by MultiChart, based on the given data. Sometimes,
however, you may want to locate an axis in a different location.

Using the Placement field, select the type of placement for the axis selected.
Placement options include: Min, Max, Automatic. Origin, and Value_Anchored.

The Axis field selects the anchor-axis that you want to place the current axis against
(e.g. place X Axis 1 in relation to Y Axis 2). If you select None as an Axis, MultiChart
will use the default axis.

To place the axis at a specific value along another axis, select Value_Anchored from
the pull-down menu, and enter the value in the Location field.

The following example shows X Axis 1, with a Placement of Max in relation to
Y Axis 1:

AxisMisc
Use AxisMisc to show or hide any of the axes. It also allows you to make any axis
logarithmic. The Editable property, when selected allows zooming, editing, and
translation for the selected axis. For more information on interactive events, see
Event Controls on page 88.
74 Part I � Using JClass Chart

Outliner
The following example hides X Axis 1 from view by deselecting Visible.

AxisPointLabels
Use the AxisPointLabels editor to create point labels (applies to X1 and X2 axes
only). Point labels label specific points of data on the X axes.

The editor reads data from the data source associated with the selected axis and
provides a list of point labels. To change the text in these labels, change the text
alongside the point. Note that the format is “point value then comma then the name
of the label”. For example,

3.0, PointLabel3

In order for the labels to appear on the chart, you also have to set the annotation
method to Point_Labels in the AxisAnnotation editor. See below for an example.

The following example shows how the default data’s point labels appear on
X Axis 1:

Note that if you are mapping multiple data sources against a single axis, then you will
want to use value labels instead, as the AxisPointLabels editor only uses points from
the first data source associated with the selected axis.
Chapter 5 � MultiChart 75

AxisRelationships
The AxisRelationships editor allows you to create a mathematical relationship
between two axes. For example, if you want to create a thermometer chart with
Celsius values on the left and the Fahrenheit values on the right, you could create a
Celsius axis, and then base the Fahrenheit axis values on it.

There are three properties included in this calculation: Originator, Multiplier, and
Constant. The calculation is based on the formula:

New Axis Value = Constant + Multiplier x Originator.

To use this editor, first click on the radio button next to the Axis that you want to
alter. Next, select an axis from the Originator menu that your calculation will be
based on, and then enter a value in the Multiplier field that represents the
relationship. The Constant value is optional; its default value is 0.0.

AxisScale
The AxisScale editor controls the range on each axis, the interval of the numbering,
and Tick Spacing. It is used primarily for the Value method of axis annotation (see
the AxisAnnotation on page 71). Precision determines the numeric precision of the
axis numbering.

The effect of Precision depends on whether it is positive or negative:

� Positive values add that number of places after the decimal place. For example,
a value of 2 displays an annotation of 10 as “10.00”.

� Negative values indicate the minimum number of zeros to use before the decimal
place. For example, a value of –2 displays annotation in multiples of 100.

The default value of Precision is calculated from the data supplied.
76 Part I � Using JClass Chart

Outliner
The Min and Max fields determine the range of data that is displayed on the chart.
There are intelligent defaults in this editor that adjust to your data and other chart
settings. You can override these settings with the fields provided.

AxisTimeLabels
The AxisTimeLabels editor allows you to control how the time labels appear. When
you select the annotation method with AxisAnnotations, you can select time labels,
which represent the values on the axis as units of time.

Time Base determines the date and time that the labelling starts from (default is
current time/date). Time Unit is the unit of time the labels use, such as year, month,
day, minute, second, etc.... The default time unit is minutes. Time Format field
allows you to customize the text in the time labels with a set of formatting codes. See
Axis Labelling and Annotation Methods on page 102 for a list of these codes.

The following example uses time labelling on X Axis 1, with seconds as the time
unit:
Chapter 5 � MultiChart 77

AxisTitle
Using the AxisTitle editor, you can add axis titles to each axis. There are also
settings for the font, point, rotation and placement of the title.

In the Placement field’s pull-down menu are a list of compass directions for title
placement. Not all options are available to x and y axes. If you select a placement,
and it returns to the previous selection, that placement is not available for that axis.
The following image shows the effects of adding titles to X Axis 1 and Y Axis 1, and
setting the font to bold, with a size of 12:

AxisValueLabels
Use the AxisValueLabels editor to enter value labels for the axes. Value labels
appear on along the axis at specified values. You also have to set the annotation
method to Value_Labels, in the AxisAnnotation editor before the labels will display.

To add value labels, enter the value, followed by a comma and a label (see above).
The following example shows how the labels in the editor above appear on X Axis 1.
78 Part I � Using JClass Chart

Outliner
5.3.2 Headers, Footers, and Legends

FooterText

The FooterText editor allows you to enter text that will appear at the bottom of the
chart area. You can also select a font, font style, and size of the footer.

Note that the footer will not display unless you check the Visible box, in the
FooterAppearance editor (this editor also controls footer opacity, background, and
foreground).

The following example shows how a ‘pointless footer’ appears on the chart area:
Chapter 5 � MultiChart 79

HeaderText
The HeaderText editor allows you to enter header text, that will appear at the top of
the chart area. You can also select a font, font style and size of the header.

Note that the header will not display unless you check the Visible box, in the
HeaderAppearance editor (which also controls header opacity, background and
foreground).

The following example shows how a ‘pointless header’ displays on the chart:

LegendLayout
The LegendLayout editor controls the layout of the legends. Orientation determines
how the legend items are placed in the legend (either vertically or horizontally). The
Anchor property positions the entire legend on the chart, based on compass
directions.
80 Part I � Using JClass Chart

Outliner
In order for the legend to display on your chart, the Visible checkbox in the
LegendAppearance editor must be selected.

Below are two examples of legend layout:

The example on the left uses the default settings with Anchor = East and
Orientation = Vertical. In the example on the right, Anchor = North, and
Orientation = Horizontal.

5.3.3 Data Source and Data View Controls
This group of editors manages the properties that control the data source, and the
views on the data. MultiChart can load data from two different sources. Each of the
data sources is assigned to a data view.

DataChart
The DataChart editor allows you to select the chart type of each data view, and
which axes each data view will be mapped against.
Chapter 5 � MultiChart 81

The ChartType property selects from the following chart types:

DataMisc
The DataMisc editor controls several aspects of the data views.

Area Bar Candle

HiLo Hilo_Open_Close Pie

Plot Scatter_Plot
Stacking_Area

Stacking_Bar
Polar

Area Radar

Radar
82 Part I � Using JClass Chart

Outliner
With the Visible property, you can show or hide each data view from the display
area. Visible In Legend will show/hide a data view from the legend (but the data
will still be charted).

Automatic Labelling attaches a dwell label to every data point in the chart. A dwell
label is an interactive label that shows the value of a point, bar or slice, when a user’s
mouse moves over it. In the example below, ‘225’ appears on top of the green bar as
the cursor passes over it, indicating that the value of the bar is 225.

When Draw on Front Plane is selected, the data view will be mapped on the front
plane of a three dimensional chart space. Applies only in cases where there are
multiple data series, displayed on multiple axes, using 3D effects.

DataSource
There are three ways of loading data with the MultiChart Bean. Two are handled by
this property: from a .dat file, or by entering data directly into the custom editor.
Both methods are managed by the DataSource editor.

The third method is to use a Swing TableModel-type data object as a data source,
instead of using the JClass Chart built-in data source. See SwingDataModel below for
details.

The first step is to select a data view with one of the radio buttons. Then, follow the
procedure below for each data view.

To load data from a file into a data view, click Load data from a file, enter the
name of the file in the File Location field, and click Done:
Chapter 5 � MultiChart 83

Specify the full path of the file. The file must be pre-formatted to the JClass Chart
Standard (see Data Sources on page 117). Sample data files are located in the
JCLASS_HOME/jclass/chart/examples directory.

You can use the data provided in the editor, as is, or you can modify it. To use
existing data, just check the Edit data in the text area radio button, and click
Done. Change data by deleting and inserting text in the area provided. Be careful to
preserve the punctuation surrounding the original text:

The chart below shows how the default data for Data View 1 appears as a plot.
Notice where the different elements are positioned. Each point on the X-axis is
labelled with the names specified in the default data. The name of each series of y-
values appears in the legend. The name of the data view is positioned directly above
the legend.

In order for the default data to display this way, you must first set the
xAxisAnnotation property to Point_Labels, and the legendVisible property
to true

.

SwingDataModel
Instead of using the chart’s internal data source, you can use a Swing TableModel-
type data object that you have already created for your application if your IDE
supports an editor for TableModel. This saves reformatting your data to match the
format used by JClass Chart.

Use the SwingDataModel1 property to specify an already-created Swing TableModel
object to use as the data source for the first data view. Use SwingDataModel2 to
specify a TableModel object to use for the chart’s second data view.
84 Part I � Using JClass Chart

Outliner
5.3.4 Appearance Controls
This group of editors allows you to control the look of specific chart subcomponents.
You can control font, borders, background and foreground for the chart, chart area,
plot area, header, footer, and legend. The following diagram illustrates the different
chart subcomponents

:

All of the editors have the same basic functionality that apply to a specific chart
subcomponent, as follows:
Chapter 5 � MultiChart 85

Small differences in each editor will be discussed below. Note that for most of the
appearance editors, there are corresponding editors for controlling other properties
of that chart element.

ChartAppearance
The ChartAppearance editor sets the foreground/background border, and opaque
values for the chart. This editor affects the areas behind all other chart elements.

ChartAreaAppearance
The ChartAreaAppearance editor sets the foreground/background border, visible,
and opacity values for the chart area (see diagram above).

FooterAppearance
The FooterAppearance editor sets the foreground/background border, visible, and
opaque values for the footer. When Visible is checked, the footer will be displayed
in the chart. By default the footer is not showing. The FooterAppearance editor
works in conjunction with the FooterText editor, which is used to enter the footer
text.

HeaderAppearance
The HeaderAppearance editor sets the foreground/background border, visible, and
opaque values for the header. When Visible is checked, a header will be displayed
in the chart. By default the header is not showing. This editor works in conjunction
with the HeaderText editor.

LegendAppearance
The LegendAppearance editor sets the foreground/background border, visible, and
opaque values for the legend and determines if it is displayed. By default, the legend
will not appear. When Visible is checked, a legend will be displayed in the chart.

The content of the legend comes from the information in the data source. In order to
change the contents of the legend, you have to change what is in the data source. For
information on how to set up legend items in the data source, see Data Formats on
page 124.

Other legend settings are found in the LegendLayout editor.

PlotAreaAppearance
The PlotAreaAppearance editor sets the foreground and background for the plot
area, and allows you to add an Axis Bounding Box. A bounding box is a graphical
feature that closes off the axes, thus forming a square.
86 Part I � Using JClass Chart

Outliner
Font
The Font editor sets the font defaults for your chart.

The font you choose will apply to all text on the chart simultaneously. The following
example sets the font to Courier, Bold, 24 point:

This font editor sets up a default font for the chart (not including the header and
footer). You can, however, change font for selected elements using custom editors for
each property. For example, the HeaderText, FooterText, and AxisAnnotation
editors allow you to override the default font settings.

5.3.5 View3D
To add 3D effects to your chart, click the View3D property.

First drag the red square in the editor until it has the desired Elevation and Rotation.
Then, check the Change Depth option box, and drag the red square until it has the
Depth you want to see on your chart. The degree of depth, elevation and rotation is
displayed in numbers at the top of the editor. Click Done to set the changes:
Chapter 5 � MultiChart 87

5.3.6 Event Controls

TriggerList
The TriggerList editor sets up what user events the chart will handle, either from a
mouse, or mouse-keyboard combination.

Actions are the available event mechanisms, such as Zoom, Rotate, Depth,
Customize, Pick and Translate. By setting up these triggers, the end-user can
examine data more closely or visually isolate part of the chart. The following list
describes these interactions:

� Translate allows moving of the chart

� Zoom allows zooming into or out from the chart

� Rotate allows rotation (only for bar or pie charts displaying a 3D effect)

� Depth allows adding depth cues to the chart (only for bar or pie charts
displaying a 3D effect)

� Customize allows the user to launch the chart Customizer. To use this feature,
you must also check the Allow User Changes box.

� Pick allows you to set up pick events. The pick method is used to retrieve an x,y
coordinate in a Chart from user input and then translate that into the data point
nearest to it. This feature requires some non-bean programming. See Using Pick
and Unpick on page 170 for more details.

A Modifier is a keyboard event that can ‘modify’ a mouse click.

It is also possible in most cases for the user to reset the chart to its original display
parameters. The interactions described here affect the chart displayed inside the
ChartArea; other chart elements like the header are not affected.
88 Part I � Using JClass Chart

6
Chart Programming Tutorial

Introduction � A Basic Plot Chart

Loading Data From a File � Adding Header, Footer, and Labels
Changing to a Bar Chart � Inverting Chart Orientation � Bar3d and 3d Effect

End-User Interaction � Get Started Programming with JClass Chart

6.1 Introduction

This tutorial shows you how to start using JClass Chart, by compiling and running an
example program. It is different from the SimpleChart Bean tutorial, because it
focuses on programmatic use of JClass Chart. For a Bean tutorial, see the
SimpleChart Bean Tutorial on page 41. This program, Plot1.java, will graph the 1963
Quarterly Expenses and Revenues for “Michelle’s Microchips”, a small company a
little ahead of its time.

The following table shows the data to be displayed:

Q1 Q2 Q3 Q4

Expenses 150.0 175.0 160.0 170.0

Revenue 125.0 100.0 225.0 300.0
89

6.2 A Basic Plot Chart

The following listing displays the program Plot1.java. This is a minimal Java program
that creates a new chart component and loads data into it from a file. It can be run as
an applet or a standalone application. The source code can be found in the
JClass Chart distribution in the JCLASS_HOME/examples/chart/intro directory.

Line Source

1 package examples.chart.intro;

2

3 import java.awt.GridLayout;

4 import javax.swing.JPanel;

5 import com.klg.jclass.chart.JCChart;

6 import com.klg.jclass.chart.ChartDataView;

7 import com.klg.jclass.chart.data.JCFileDataSource;

8 import com.klg.jclass.util.swing.JCExitFrame;

9

10 import demos.common.FileUtil;

11

12 /**

13 *Basic example of Chart use. Load data from

14 *a file and displays it as a simple plot chart.

15 */

16 public class Plot1 extends JPanel {

17

18 /**

19 * Default constructor for this class. Loads data and

20 * sets up chart.

21 */

22 public Plot1() {

23 setLayout(new GridLayout(1,1));

24

25 // Create new chart instance.

26 chart = new JCChart();

27 // Load data for chart
90 Part I � Using JClass Chart

Outliner
Most of the code in Plot1.java should be familiar to Java programmers. The first few
lines (3–10) import the classes necessary to run Plot1.java. In addition to the standard
AWT GridLayout class and Swing JPanel class, three classes in the jclass.chart
package are needed: JCChart (the main chart class), ChartDataView (the data view
object), and JCFileDataSource (a stock data source). This example also makes use of
the JCExitFrame from JClass Elements. Line 16 provides the class definition for this
program, a subclass of JPanel.

28 try {

29 // Use JCFileDataSource to load data from specified file

30 String fname = FileUtil.getFullFileName("examples.chart.intro",

31 "chart1.dat");

32 chart.getDataView(0).setDataSource(new JCFileDataSource

33 (fname));

34 }

35 catch (Exception e) {

36 e.printStackTrace(System.out);

37 }

38 // Add chart to panel for display.

39 add(chart);

40 }

41

42 public static void main(String args[]) {

43 JCExitFrame f = new JCExitFrame("Plot1");

44 Plot1 p = new Plot1();

45 f.getContentPane().add(p);

46 f.setSize(200, 200);

47 f.setVisible(true);

48 }

49

50 }

51

Line Source
Chapter 6 � Chart Programming Tutorial 91

Lines 22–40 define the constructor. The Layout property on line 23 lays out a simple
grid structure to display the components it holds. A new chart is then instantiated on
line 26. Lines 30-31 load data from a file named chart1.dat into a new data source
object (JCFileDataSource) and tell the chart to display this data.

Lines 42-48 define the main() method needed when the program is run as a
standalone Java application.

When Plot1.java is compiled and run, the window shown below is displayed:

Figure 10 The Plot1.java program displayed

6.3 Loading Data From a File

A common task in any JClass Chart program is to load the chart data into a format
that the chart can use. JClass Chart uses a “model view/control” (MVC) architecture
to handle data in a flexible and efficient manner. The data itself is stored in a object
that implements the ChartDataModel interface created and controlled by your
application. The chart has a ChartDataView object that controls a view on this data
source, providing properties that control which data source to use, and how to
display the data.

JClass Chart includes several stock (built-in) data sources that you can use (or you
can define your own). This program uses the data source that reads data from a file:
JCFileDataSource. With this understanding we can look more closely at lines 32-33:

chart.getDataView(0).setDataSource(new JCFileDataSource
(fname));

Two things are happening here: a new JCFileDataSource object is instantiated, with
the name of the data file passed as a parameter in the constructor; the DataSource
property of the chart’s first (default) data view is being set to use this data source.
92 Part I � Using JClass Chart

Outliner
The following shows the contents of the chart1.dat file:

 ARRAY 2 4
 # X-values
 1.0 2.0 3.0 4.0
 # Y-values
 150.0 175.0 160.0 170.0
 # Y-values set 2
 125.0 100.0 225.0 300.0

This file is in the format understood by JCFileDataSource. Lines beginning with a
‘#’ symbol are treated as comments. The first line tells the FileDataSource object
that the data that follows is in Array layout and is made up of two series containing
four points each. The X-values are used by all series.

There are two types of data: Array and General. Use Array layout when the series of
Y-values share common X-values. Use General when the Y-values do not share
common X-values, or when all series do not have the same number of values.

Note that for data arrays in Polar charts, (x, y) coordinates in each data set will be
interpreted as (theta, r). For array data, the x array will represent a fixed theta value
for each point.

In Radar and Area Radar charts, only array data can be used. (x, y) points will be
interpreted in the same way as for Polar charts (above), except that the theta (that is,
x) values will be ignored. The circle will be split into nPoints segments with nSeries
points drawn on each radar line.

For complete details on using data with JClass Chart, please see the Data Sources
chapter.

6.4 Adding Header, Footer, and Labels
The plot displayed by Plot1.java is not very useful to an end-user. There is no header,
footer, or legend, and the X-axis numbering is not very meaningful.

JClass Chart will always try to produce a reasonable chart display, even if very few
properties have been specified. JClass Chart will use intelligent defaults for all
unspecified properties.

All properties for a particular chart may be specified when the chart is created.
Properties may also be changed as the program runs by calling the property’s set
method. A programmer can also ask for the current value of any property by using
the property’s get method.

Adding Headers and Footers
To display a header or footer, we need to set properties of the Header and Footer
objects contained in the chart. For example, the following code sets the Text and
Visible properties for the footer:

// Make footer visible
chart.getFooter().setVisible(true);
// By default, footer is a JLabel - set its Text property
((JLabel)chart.getFooter()).setText("1963 Quarterly Results");

Visible displays the header/footer. Text specifies the text displayed in the
header/footer.
Chapter 6 � Chart Programming Tutorial 93

By default, headers and footers are JLabels, although they can be any Swing
JComponent. JLabels support the use of HTML tags. The use of HTML tags
overrides the default Font and Color properties of the label.

Please note that HTML labels may not work with PDF, PS, or PCL encoding.

Adding a Legend and Labelling Points
A legend clarifies the chart by showing an identifying label for each series in the
chart. We would also like to display more meaningful labels for the points along the
X-axis. Both types of information can be easily specified in the data file itself. The
following lists chart2.dat, a modified version of the previous data file that includes
series labels (for the legend), and point labels (for the X-axis):

ARRAY '' 2 4
Point Labels
'Q1' 'Q2' 'Q3' 'Q4'
X-values, with a blank series label ('') -- a blank series
label is required if the Y-values have series labels
'' 1.0 2.0 3.0 4.0
Y-values, with Series label (in this case, Expenses)
'Expenses' 150.0 175.0 160.0 170.0
Y-values set 2, with Series label (in this case, Revenue)
'Revenue' 125.0 100.0 225.0 300.0

Lines beginning with a ‘#’ symbol are treated as comments.

As noted in the comments within the above code, if series labels are being used for
the Y values, then the X data must be preceded by a blank series label (''). This
blank label will not show up on the chart. The third line specifies the point labels (for
instance, “Q1”). Subsequent lines of data begin with a Y data series label (“Expenses”
and “Revenue”).

This data file now provides the labels that we want to use, but to actually display
them in the chart, we need to set the Legend object’s Visible property and change
the AnnotationMethod property of the X-axis to annotate the axis with the point
labels in the data.

These and the previous changes are combined; now the chart is created with code
that looks like this:

// Create new chart instance.
chart = new JCChart();

// Load data for chart
try {

// Use JCFileDataSource to load data from specified file
String fname = FileUtil.getFullFileName("examples.chart.intro",

"chart2.dat");
chart.getDataView(0).setDataSource(new

JCFileDataSource(fname));
}
catch (Exception e) {

e.printStackTrace(System.out);
}
// Make header visible, and add some text
chart.getHeader().setVisible(true);
// By default, header is a JLabel -- set its Text property
((JLabel)chart.getHeader()).setText("Michelle's Microchips");
94 Part I � Using JClass Chart

Outliner
// Make footer visible
chart.getFooter().setVisible(true);
// By default, footer is a JLabel -- set its Text property
((JLabel)chart.getFooter()).setText("1963 Quarterly Results");

// Make legend visible
chart.getLegend().setVisible(true);

// Make X-axis use point labels instead of default value labels.
chart.getChartArea().getXAxis(0).setAnnotationMethod

(JCAxis.POINT_LABELS);

// Add chart to panel for display.

add(chart);

Because we are accessing a variable defined in JCAxis we need to add that to the
classes imported by the program:

 import jclass.chart.JCAxis;

In the line that sets the annotation method, notice that XAxis is a collection of JCAxis
objects. A single chart can display several X- and Y-axes.

The chart resulting from these changes is displayed below. Full source code can be
found in the plot2.java program, located in the JCLASS_HOME/examples/chart/intro
directory.

Figure 11 The program created by Plot2.java
Chapter 6 � Chart Programming Tutorial 95

6.5 Changing to a Bar Chart

A powerful feature of JClass Chart is the ability to change the chart type
independently of any other property.1 For example, to change the Plot2 chart to a
bar chart, the following code can be used:

 c.getDataView(0).setChartType(JCChart.BAR);

This sets the ChartType property of the data view. Alternately, you can set the chart
type when you instantiate a new chart, for example:

 JCChart c = new JCChart(JCChart.BAR);

Figure 12 The bar2.java program displayed

The full code for this program (Bar2.java) can be found in with the other examples.

JClass Chart can display data as one of ten different chart types. For more
information on chart types, see Chart Types on page 10.

1. Although there are interdependencies between some properties, most properties are completely orthogonal.
96 Part I � Using JClass Chart

Outliner
6.6 Inverting Chart Orientation

Most graphs display the X-axis horizontally and the Y-axis vertically. It is often
appropriate, however, to invert the sense of the X- and Y-axis. This is easy to do,
using the Inverted property of the data view object.

In a plot, inverting causes the Y-values to be plotted against the horizontal axis, and
the X-values to be plotted against the vertical. In a bar chart, it causes the bars to be
displayed horizontally instead of vertically.

When programming JClass Chart, try not to assume that the X-axis is always the
horizontal axis. Determining which axis is vertical and which horizontal depends on
the value of the Inverted property.

To invert, set the data view object’s Inverted property to true. By default it is false.

 c.getDataView(0).setInverted(true);

The following shows the windows created by Plot2.java and Bar2.java when inverted:

Figure 13 Plot2 and Bar2 windows with Inverted set to true

Full code for these examples is in the JCLASS_HOME/examples/chart/intro directory.
Chapter 6 � Chart Programming Tutorial 97

6.7 Bar3d and 3d Effect

Chart 3D effects can be added to bar and stacking bar charts. Three properties affect
the display of 3D information: Depth, Elevation, and Rotation. Modifying these
properties will alter the 3D effects displayed. Depth and at least one of Elevation or
Rotation must be non-zero to see any 3D effects. The properties can be set as
follows:

chart.getChartArea().setElevation(20);
chart.getChartArea().setRotation(30);
chart.getChartArea().setDepth(10);

6.8 End-User Interaction

More than simply a display tool, JClass Chart is an interactive component.
Programmers can explicitly add functions that enable an end-user to directly interact
with a chart. The following end-user interactions are possible:

� Translation — users can move a graph or a series of graphs along the X- and or
Y- axes.

� Rotate — users can change the vantage point of a chart type, to better view
information contained with a JClass Chart component.

� Zoom — users can zoom in or out of a JClass Chart component to better view
information contained with a JClass Chart component.

� Depth — users can change the apparent depth of a 3D chart.

� Edit — users can change the placement of data points within a chart.

� Customize — users can alter the other display features of a chart, (such as color,
label names or the numerical value of data points) that comprise a chart display.

� Pick-users can determine the position of data points displayed on a chart.

Function call

Header for the function
Description

setDepth()

public void setDepth(int newDepth)

Controls the apparent depth of the chart; the
parameter newDepth represents the depth as a
percentage of the width; valid values are 0 to 500

setElevation()

public void setElevation(int newElevation)

Controls the distance above the X-axis for the
3D effect; the parameter newElevation is the number
of degrees above the X-axis that the chart is to be
positioned; valid values are between -45 and 45

setRotation()

public void setRotation(int newRotation)

Controls the position of the eye relative to the Y-axis
for the 3D effect; the parameter newRotation is the
number of degrees to the right of the Y-axis the
chart is to be positioned; valid values are between
-45 and 45
98 Part I � Using JClass Chart

Outliner
6.9 Get Started Programming with JClass Chart

The following suggestions should help you become productive with JClass Chart as
quickly as possible:

� Check out the sample code — the example and demo programs included with
JClass Chart are useful in showing what JClass Chart can do, and how to do it.
Run them and examine the source code. They can all be found in the
JCLASS_HOME/demos/chart and JCLASS_HOME/examples/chart directories.

� Browse the JClass Chart API documentation – complete reference
documentation on the API is available online in HTML format, generated by
javadoc. All of the properties, methods, and events for each component are
completely documented.
Chapter 6 � Chart Programming Tutorial 99

../api/index.html

100 Part I � Using JClass Chart

7
Axis Controls

Creating a New Chart in a Nutshell � Axis Labelling and Annotation Methods

Positioning Axes � Chart Orientation and Axis Direction
Setting Axis Bounds � Customizing Origins

Logarithmic Axes � Titling Axes and Rotating Axis Elements

Adding Grid Lines � Adding a Second Axis

JClass Chart can automatically set properties based on the data, so axis numbering
and data display usually do not need much customizing. You can however, control
any aspect of the chart axes, depending on your requirements. This chapter covers
the different axis controls available.

If you are developing your chart application using one of the JClass Chart Beans,
please refer to the Bean Reference chapter instead.

7.1 Creating a New Chart in a Nutshell
1. If one exists, use an existing chart as a starting point for the new one. The sample

charts provided in JCLASS_HOME/examples/chart/ are a good starting point.
Load a chart description resembling the new chart.

2. Load your data into the chart.

3. Set the chart type.

4. Annotate and format the axes and data if necessary, described as follows:

� Axis annotation (Values [default], ValueLabels, PointLabels, TimeLabels)

� Positioning Axis Annotations

� Chart Orientation and Axis Direction

� Setting Axis Bounds

� Customizing Origins

� Logarithmic Axes
101

� Titling Axes and Rotating Axis Elements

� Adding Grid Lines

� Adding a Second Axis

7.2 Axis Labelling and Annotation Methods

There are several ways to annotate the chart’s axes, each suited to specific situations.
The chart can automatically generate numeric annotation appropriate to the data it is
displaying; you can provide a label for each point in the chart (X-axis only); you can
provide a label for specific values along the axis; or the chart can automatically
generate time-based annotations.1

Whichever annotation method you choose, the chart makes considerable effort to
produce the most natural annotation possible, even as the data changes. You can
fine-tune this process using axis annotation properties.

User-set annotations support the use of HTML tags. The use of HTML tags
overrides the default Font and Color properties of the label.

Please note that HTML labels may not work with PDF, PS, or PCL encoding.

7.2.1 Choosing Annotation Method

A variety of properties combine to determine the annotation that appears on the
axes. The JCAxis AnnotationMethod property specifies the method used to annotate
the axis. The valid annotation methods are:

1. None of the axis properties discussed in this section apply to Pie charts, since Pie charts don’t have axes. To annotate a
Pie Chart, use Chart Labels; for more information, please see the Chart Labels on page 150.

JCAxis.VALUE
(default)

The chart chooses appropriate axis annotation automatically
(with possible callbacks to a label generator), based on the
chart type and the data itself.

JCAxis.POINT_LABELS
(X-axis only)

The chart spaces the points based on the X-values and
annotates them with text you specify (in the data source) for
each point.

JCAxis.VALUE_LABELS The chart annotates the axis with text you define for specific
X- or Y-axis coordinates.

JCAxis.TIME_LABELS The chart interprets the X- or Y-values as units of time,
automatically choosing time/date annotation based on the
starting point and format you specify. Not for Polar, Radar, or
Area Radar charts.
102 Part I � Using JClass Chart

Notes:

� Point labels annotation (JCAxis.POINT_LABELS) is only valid for an X-axis when
it has been added to the X-axis collection in JCChartArea. This means that a new
JCAxis instance that has not yet been added to JCChartArea will not be
considered an X-axis.

� The spokes of Area Radar and Radar charts are automatically labelled “0”, “1”,
“2”, and so forth, unless the x-annotation method is JCAxis.POINT_LABELS.

� For Polar charts, the default annotation for JCAxis.VALUE depends on the angle
units specified. If it is radians, the symbol for pi will not be used (it will be
represented by 3.14 instead). Also, the X-axis will always be linear; that is, setting
the logarithmic properties to true will be ignored.

The following topics discuss setting up and fine-tuning each type of annotation.

7.2.2 Values Annotation

Values annotation produces numeric labelling along an axis, based on the data itself.
The chart can produce very natural-looking axis numbering automatically, but you
can fine-tune the properties that control this process.

Numbering Precision
Use the Precision axis property to set the number of decimal places to use when
displaying each number. The PrecisionIsDefault property allows the chart to
automatically determine precision based on the data. The effect of Precision
depends on whether it is positive or negative:

� Positive values add that number of places after the decimal place. For example, a
value of 2 displays an annotation of 10 as “10.00”.

� Negative values indicate the minimum number of zeros to use before the decimal
place. For example, a value of -2 displays annotation in multiples of 100.

The default value of Precision is calculated from the data supplied.

Numbering and Ticking Increments
Use the NumSpacing axis property to set the increment between labels along an axis.
The NumSpacingIsDefault property allows the chart to automatically determine the
increment.

Use the TickSpacing axis property to set the increment between ticks along an axis.
TickSpacing is used only if the AnnotationMethod property is set to VALUE; in that
case, TickSpacing should generally divide equally into NumSpacing in order to allow
each number to have a tick. The TickSpacingIsDefault property allows the chart to
determine the increment automatically.

Note that if the AnnotationMethod property is set to POINT_LABELS, tick lines
automatically appear only at point labels; if set to TIME_LABELS, tick lines
automatically appear only at time labels; and if set to VALUE_LABELS, tick lines
automatically appear only at user-specified value labels.
Chapter 7 � Axis Controls 103

7.2.3 PointLabels Annotation

PointLabels annotation displays defined labels along an X-axis. This is useful for
annotating the X-axis of any chart for which all series share common X-values.
PointLabels are most useful with bar, stacking bar and pie charts. It is possible to
add, remove, and edit PointLabels. In JClass Chart, PointLabels are typically
defined with the data.

Figure 14 PointLabels X-axis annotation

PointLabels are a collection of labels. The first label applies to the first point, the
second label applies to the second point, and so on.

The labels can also be supplied by setting the PointLabels property of the
ChartDataView object for this chart. For example, the following code specifies labels
for each of the three points on the X-axis:

c.getChartArea().getxAxis(0).setAnnotationMethod(JCAxis.POINT_LABELS);
ChartDataView cd = c.getDataView(0);
cd.setPointLabel(0, "Point 1");
cd.setPointLabel(1, "Point 2");
cd.setPointLabel(2, "Point 3");

For Polar, Radar, and Area Radar charts, if the X-axis annotation is
ANNO_POINT_LABELS and the data is of type array, then a point label is drawn at the
outside of the X-axis for each point. (Series labels are used in the legend as usual.)
104 Part I � Using JClass Chart

7.2.4 ValueLabels Annotation

ValueLabels annotation displays labels at the axis coordinate specified. This is useful
for displaying special text at a specific axis coordinate, or when a type of annotation
that the chart does not support is needed, such as scientific notation. You can set the
axis coordinate and the text to display for each ValueLabel, and also add and
remove individual ValueLabels.

Figure 15 Using ValueLabels to annotate axes

Every label displayed on the axis is one ValueLabel. Each ValueLabel has a Value
property and a Label property.

If the AnnotationMethod property is set to JCAxis.VALUE_LABELS, the chart places
labels at explicit locations along an axis. The ValueLabels property of JCAxis, which
is a ValueLabels collection, supplies this list of strings and their locations. For
example, the following code sets value labels at the locations 10, 20 and 30:

 JCAxis x=c.getChartArea.getXAxis(0);
 x.setValueLabels(0, new JCValueLabel(10, "Label"));
 x.setValueLabels(1, new JCValueLabel(20, "Label 2"));
 x.setValueLabels(2, new JCValueLabel(30, "Label 3"));

The ValueLabels collection can be indexed either by subscript or by value:

 JCValueLabel v1
 // this retrieves the label for the second Value-label
 v1=c.getChartArea().getXAxis(0).
 getValueLabels(2);
 // this retrieves the label at chart coordinate 2.0
 v1=c.getChartArea().getXAxis(0).
 getValueLabels(2.0);
Chapter 7 � Axis Controls 105

7.2.5 TimeLabels Annotation

TimeLabels annotation interprets the value data as units of time. The chart calculates
and displays a time-axis based on the starting point and format specified. A time-axis
is useful for charts that measure something in seconds, minutes, hours, days, weeks,
months, or years.

Figure 16 TimeLabels annotating X- and Y-axes

Four properties are used to control the display and behavior of TimeLabels:

� AnnotationMethod (set to JCAxis.TIME_LABELS to use this annotation method)

� TimeUnit

� TimeBase

� TimeFormat

Time Unit
Use the TimeUnit property to specify how to interpret the values in the data. Select
either JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS, JCAxis.WEEKS,
JCAxis.MONTHS, or JCAxis.YEARS. For example, when set to JCAxis.YEARS, values
that range from 5 to 15 become a time-axis spanning 10 years. By default, TimeUnit is
set to JCAxis.SECONDS.

Time Base
Use the TimeBase property to set the date and time that the time-axis starts from. Use
the Java Date class (java.util.Date) to specify the TimeBase. The default for
TimeBase is the current time.

For example, the following statement sets the starting point to January 15, 1985:
c.getChartArea().getXAxis(0).setTimeBase(new Date(85,0,15));
106 Part I � Using JClass Chart

Time Format
Use the TimeFormat property to specify the text to display at each annotation point.
The TimeFormatIsDefault property allows the chart to automatically determine an
appropriate format based on the TimeUnit property and the data, so it is often
unnecessary to customize the format.

TimeFormat specifies a time format. You build a time format using the Java time
format codes from the SimpleDataFormat class. The chart displays only the parts of
the date/time specified by TimeFormat. The format codes are based on the default
Java formatting provided by java.text.

The default for TimeFormat is the default used by SimpleDateFormat.

Symbol Meaning Presentation Example

G era designator AD

y year Number 1997

M month in year Text & Number July 07

d day in month Number 10

h hour in am/pm (1 ~12) Number 12

H hour in day (0~23) Number 0

m minute in hour Number 30

s second in minute Number 55

S millisecond Number 978

E day in week Text Tuesday

D day in year Number 189

F day of week in month Number 2nd Wed in July

w week in year Number 27

W week in month Number 2

a am/pm marker Text PM

k hour in day (1~24) Number 24

K hour in am/pm (0~11) Number 0

z time zone Text Pacific Standard Time

’ escape for text delimiter

’’ single quote Literal
Chapter 7 � Axis Controls 107

Using Date Methods
The dateToValue() method converts a Java date value into its corresponding axis
value (a floating-point value). The valueToDate() method converts a value along
an axis to the date that it represents. Note that the axis must already be set as a time
label axis.

Here is a code example showing the dateToValue() method converting a date (in
this case, February 2, 1999) to a Y-axis value, and showing the valueToDate()
method converting a Y-axis value (in this case, 3.0) to the date that it represents.

 JCAxis y = chart.getChartArea().getYAxis(0);
 Date d = y.valueToDate(3.0);
 double val = y.dateToValue(new Date(99,1,2));

7.2.6 Custom Axes Labels

JClass Chart will label axes by default. However, you can also generate custom
labels for the axes by implementing the JCLabelGenerator interface. This interface
has one method – makeLabel() – that is called when a label is required at a
particular value.

Note that the spokes of Radar and Area Radar charts will be automatically labelled
“0”, “1”, “2”, and so forth, unless the x-annotation method is JCAxis.POINT_LABELS.

To generate custom axes labels, the axis’ AnnotationMethod property, which
determines how the axis is labelled, must be set to VALUE. Also, the
setLabelGenerator() method must be called with the class that implements the
JCLabelGenerator interface.

The number of labels, that is, the number of times makeLabel() is called, depends
on the NumSpacing parameter of the axis. Not all labels will be displayed if there is
not enough room.

The makeLabel() method takes two parameters: value (the axis value to be labelled)
and precision (the numeric precision to be used).

� In the usual case, the makeLabel() method returns a String, and that String will
be used as the axis label at value.

� If the makeLabel() method returns a ChartText object, then that ChartText
object will be used as the axis label at value.

� If an object other than String or ChartText is returned, the String derived
from calling that object’s toString() method will be used as the axis label at
value.

Here is a code example showing how to customize the labels for a linear axis by
implementing the JCLabelGenerator interface. In this case, Roman numeral
labels are going to be generated (instead of the usual Arabic labels) for the
numbers 1 through 10.
108 Part I � Using JClass Chart

class MyLabelGenerator implements JCLabelGenerator
{
 public Object makeLabel(double value, int precision) {
 int intvalue = (int) value;
 String s = null;
 switch (intvalue) {
 case 1 :
 s = "I";
 break;
 case 2 :
 s = "II";
 break;
 case 3 :
 s = "III";
 break;
 case 4 :
 s = "IV";
 break;
 case 5 :
 s = "V";
 break;
 case 6 :
 s = "VI";
 break;
 case 7 :
 s = "VII";
 break;
 case 8 :
 s = "VIII";
 break;
 case 9 :
 s = "IX";
 break;
 case 10 :
 s = "X";
 break;
 default :
 s = "";
 break;
 }
 return s;
 }
}

Note that the user will need to specify the label generator as follows:

axis.setLabelGenerator(new MyLabelGenerator());

Also note that JClass Chart calls the makeLabel() method for each needed label (recall
that each axis requests needed labels based on its NumSpacing, Min, and Max
properties). Thus, if JClass Chart needs n labels, the makeLabel() method is called n
times.
Chapter 7 � Axis Controls 109

7.3 Positioning Axes

Use the Placement property to make a specific axis placement or use the
PlacementIsDefault property to specify whether the chart is meant to determine
axis placement. When making a specific axis placement, the axes may be placed
against its partner axis at that axis’ minimum value, maximum value, origin value, or
a user-specified value.

For example,

axis.setPlacement(JCAxis.MIN);

will place the axis against its partner axis' minimum value

axis.setPlacement(otherAxis, 5.0)

will place the axis against otherAxis at the value 5.0

Note: When Placement is set to Origin, changing the axis origin will move the
placed axis to the new origin value.

Figure 17 An example of axes positioning; the X-axis is placed against the Y-axis' minimum value

Polar Charts – Special Minimum and Maximum Values
Note that for Polar charts, the X-axis max and min values are fixed, and these fixed
values change depending on the angle unit type. The Y-axis max and min values are
adjustable, but are constrained to avoid data clipping. The Y-axis min will never be
less than zero (unless the Y-axis is reversed). (theta, –r) will be interpreted as
(theta+180, r). The Y-axis min will always be at the center unless the axis is reversed,
in which case the Y-axis max will be at the center.

Radar and Area Radar Charts – Minimum Values
The minimum value for a Y-axis in Radar and Area Radar charts can be negative.
110 Part I � Using JClass Chart

7.4 Chart Orientation and Axis Direction

A typical chart draws the X-axis horizontally from left-to-right and the Y-axes
vertically from bottom-to-top. You can reverse the orientation of the entire chart,
and/or the direction of each axis.

7.4.1 Inverting Chart Orientation

Use the ChartDataView object’s Inverted property to change the chart orientation.
When set to true, the X-axis is drawn vertically and the Y-axis horizontally for the
data view. Any properties set on the X-axis then apply to the vertical axis, and Y-axis
properties apply to the horizontal axis.

Note: To switch the orientation of charts with multiple data views, you must set the
Inverted property of each ChartDataView object.

Figure 18 Normal and inverted orientation

7.4.2 Changing Axis Direction

Use the Reversed property of JCAxis to reverse the direction of an axis. By default,
Reversed is set to false.

Figure 19 Two charts depicting a normal and reversed Y- axis
Chapter 7 � Axis Controls 111

For Polar charts, data points with positive x-values will be displayed in a
counterclockwise direction starting at the origin base. When the XAxis.reversed
flag is true, positive x-values will be displayed clockwise.

7.5 Setting Axis Bounds
Normally a graph displays all of the data it contains. There are situations where only
part of the data is to be displayed. This can be accomplished by fixing axis bounds.

Min and Max
Use the Min and Max properties of JCAxis to frame a chart at specific axis values. The
MinIsDefault and MaxIsDefault properties allow the chart to automatically
determine axis bounds based on the data bounds.

7.6 Customizing Origins
The chart can choose appropriate origins for the axes automatically, based on the
data. It is also possible to customize how the chart determines the origin, or to
directly specify the coordinates of the origin.

Figure 20 Defining origins for X- and Y-axes

Origin Placement
The easiest way to customize an origin is by controlling its placement, using the
Axes’ OriginPlacement property. It has four possible values: AUTOMATIC, ZERO, MIN
and MAX. When set to AUTOMATIC, the origin is placed at the axis minimum or at zero,
if the data contains positive and negative values or is a bar chart. ZERO places the
origin at zero, MIN places the origin at the minimum value on the axis, and MAX places
the origin at the maximum value on axis.
112 Part I � Using JClass Chart

Origin Coordinates
When the origin of a coordinate must be set to a value different from the default
(0,0), use the Axes’ Origin property. The OriginIsDefault property allows the chart
to automatically determine the origin coordinate based on the data.

Note: When an origin coordinate is explicitly set or fixed, the chart ignores the
OriginPlacement property.

7.7 Logarithmic Axes

Axis annotation is normally interpreted and drawn in a linear fashion. It is also
possible to set any axis to be interpreted logarithmically (log base 10), as shown in the
following image. Logarithmic axes are useful for charting certain types of scientific
data.

Figure 21 Logarithmic X- and Y-axes

Because of the nature of logarithmic axes, they impose the following restrictions on
the chart:

� any data that is less than or equal to zero is not graphed (it is treated as a data
hole), since a logarithmic axis only handles data values that are greater than zero.
For the same reason, axis and data minimum/maximum bounds and origin
properties cannot be set to zero or less.

� axis numbering increment, ticking increment, and precision properties have no
effect when the axis is logarithmic.

� the X-axis of bar and stacking bar charts cannot be logarithmic.

� the annotation method for the X-axis cannot be PointLabels or TimeLabels.

Specifying a Logarithmic Axis
Use the Logarithmic property of JCAxis to make an axis logarithmic.

Note: Pie charts are not affected by logarithmic axes.
Chapter 7 � Axis Controls 113

7.8 Titling Axes and Rotating Axis Elements

Adding a title to an axis clarifies what is charted along that axis. You can add a title to
any axis, and also rotate the title or the annotation along the axis, as shown below.

Figure 22 Rotated axis title and annotation

Adding an Axis Title
Use the Title property to add a title to an axis. It sets the JCAxisTitle object
associated with the JCAxis. JCAxisTitle controls the appearance of the axis title.
JCAxisTitle’s Text property specifies the title text.

Axis Title Rotation
Use the Rotation property of JCAxisTitle to set the rotation of the title. Valid values
are defined in ChartText: DEG_0 (no rotation), DEG_90 (90 degrees counterclockwise),
DEG_180 (180 degrees), and DEG_270 (270 degrees).

Rotating Axis Annotation
Use the AnnotationRotation property of JCAxis to rotate the axis annotation to
either 90, 180, or 270 degrees counterclockwise. 270-degree rotation usually looks
best on a right-hand side axis.
114 Part I � Using JClass Chart

7.9 Adding Grid Lines

Displaying a grid on a chart can make it easier to see the exact value of data points.
The spacing between lines on the grid can be defined to determine how a grid is
displayed.

Figure 23 JClass Chart illustrating the effects of grid lines

Horizontal gridlines are a property of the Y-axis. Vertical gridlines are a property of
the X-axis. Set GridVisible to true to display gridlines.

Note that for Polar charts, Y-gridlines will be circular while X-grid lines will be radial
lines from the center to the outside of the plot. For both Radar and Area Radar
charts, radar lines are represented by the X-axis gridlines. You may choose normal
gridlines (circular) or “webbed” gridlines. For the Y-axis, you may also have gridlines
on (default is off).

Grid Spacing
Use the GridSpacing property to customize the grid spacing for an axis. The
GridSpacingIsDefault property allows the chart to space the grid automatically,
drawing a gridline wherever there is annotation. By default, gridlines will correspond
with axis annotations.

Grid Appearance
Use the grid GridStyle properties to customize the line pattern, thickness, and color
of the gridlines. The following code fragment provides a sample of GridStyle and
GridVisible used within a program:

otherXAxis.setGridVisible(true);
otherXAxis.getGridStyle().getLineStyle().setColor(Color.green);
otherYAxis.setGridVisible(true);
otherYAxis.getGridStyle().getLineStyle().setColor(Color.green);
Chapter 7 � Axis Controls 115

7.10 Adding a Second Axis
There are two ways to create a second Y-axis on a chart. The simplest way is to define
a numeric relationship between the two Y axes, as shown in the following illustration.
Use this to display a different scale or interpretation of the same graph data.

Note that for Polar, Radar, and Area Radar charts, there is no second Y-axis.

Defining Axis Multiplier
Use the Multiplier property to define the multiplication factor for the second axis.
This property is used to generate axis values based on the first axis. The
multiplication factor can be positive or negative.

Using a Constant Value
Use the Constant axis property to define a value to be added to or subtracted from
the axis values generated by Multiplier.

Figure 24 Chart containing multiple Y-axes

In some cases, it may be desirable to show two sets of data in the same chart that are
plotted against different axes. JClass Chart supports this by allowing each DataView
to specify its own XAxis and YAxis. For example, consider a case in which a second
data set d2 is to be plotted against its own Y-axis. A JCAxis instance must be created
and added to the JCChartArea, as shown:

// Create a Y-axis and set it vertical
otherYAxis = new JCAxis();
otherYAxis.setVertical(true);

// Add it to the list of Y-axes in the chart area
c.getChartArea().setYAxis(1, otherYAxis);
// Add it to the data view
d2.setYAxis(otherYAxis);

Hiding the Second Axis
Set the Visible property to false to remove it from display. By default, it is set
to true.

Other Second-Axis Properties
All axes have the same features. Any property can be set on any axis.
116 Part I � Using JClass Chart

8
Data Sources

Overview � Pre-Built Chart DataSources � Loading Data from a File

Loading DataSource from a URL � Loading Data from an Applet
Loading Data from a Swing TableModel � Loading Data from an XML Source � Data Formats

Data Binding: Specifying Data from Databases � Making Your Own Chart Data Source

Making an Updating Chart Data Source

8.1 Overview

Data is loaded into a chart by attaching one or more chart data sources to it.
A chartable data source is an object that takes real-world data and puts it into a form
that JClass Chart can use. Once your data source is attached, you can chart the data
in a variety of ways.

The design of JClass Chart makes it possible to chart data from virtually any real-
world source. There is a toolkit you can use to create custom chartable objects (data
sources) for your real-world data.

Creating your own data sources can be time consuming, however. For that reason,
JClass Chart provides pre-built chartable data sources for most common real-world
data: files, URLs, applets, Strings, and databases.

This chapter describes how to use the pre-built data sources and how to create your
own.
117

8.2 Pre-Built Chart DataSources

The pre-built DataSources for JClass Chart are located in the
com.klg.jclass.chart.data package. Their names and descriptions follow.

8.3 Loading Data from a File

An easy way to bring data into a chart is to load it from a formatted file using
JCFileDataSource. To load data this way, you create a data file that follows
JClass Chart’s standard format, as outlined in Section 8.8.

Then, you instantiate a JCFileDataSource object and attach it to a view in your
chart application. And that’s it. The following example shows how to instantiate and
attach a JCFileDataSource:

chart.getDataView(0).setDataSource(new JCFileDataSource("file.dat"));

8.4 Loading DataSource from a URL

You can chart data from a URL address using JCURLDataSource. To load data this
way, you create a data file that follows JClass Chart’s standard format, as outlined in
Section 8.8.

Then, you instantiate JCURLDataSource and attach it to a view in your chart. The
following example uses data from a file named plot1.dat:

chart.getDataView(0).setDataSource(new
JCURLDataSource(getDocumentBase(), "plot1.dat"));

DataSource name Description

BaseDataSource A very simple container for chart data

JCAppletDataSource Used to load data from an applet parameter tag

JCChartSwingDataSource Used to extract data from a Swing TableModel

JCDefaultDataSource An extension of BasicDataSource

JCEditableDataSource An editable version of JCDefaultDataSource

JCFileDataSource Used to load data from a file

JCInputStreamDataSource Used to load data from any stream

JCStringDataSource Used to load data from a string

JCURLDataSource Used to load data from a URL

JDBCDataSource Used to load data from a JDBC Result Set
118 Part I � Using JClass Chart

Parameter options for JCURLDataSource:
The following are valid parameter combinations for JCURLDataSource:

� URL

� base, file

� host, file

host: The WWW hostname
file: The fully qualified name of the file on the server
URL: The URL address of a data file, eg, http://www.sitraka.com/datafile.dat
base: A URL object representing the directory where the file is located

In the example above, the first parameter passed is getDocumentBase(), a method
that returns the path where the current applet is located.

8.5 Loading Data from an Applet

You can chart data from an Applet using JCAppletDataSource.

To prepare the data, put it into the standard format, (see Data Formats), and insert it
into the HTML file that calls your Applet. The HTML syntax is as follows:

<Applet>
...
<PARAM NAME=Your_Data_Name VALUE="formatted data... “>
...
</Applet>

‘Your_Data_Name’ is used by your Applet to select the right set of information. Use
the same name in the Applet and the HTML source. If a name is not provided
“data” is assumed.

With your data in the HTML file, instantiate an JCAppletDataSource and attach it to
a view in your chart as follows:

 chart.getDataView(0).setDataSource(new JCAppletDataSource(applet,
“Your_Data_Name"));

Example of Data in an HTML file
<APPLET CODEBASE="../../../.."
CODE="jclass/chart/demos/labels/labels.class"

<PARAM NAME=data VALUE="

 ARRAY 'Oblivion Inc. 1996 Results' 2 4
 'Q1' 'Q2' 'Q3' 'Q4'
 'Quarter' 1 2 3 4
 'Expenses' 150.2 182.1 152.1 170.6
 'Revenue ' 125.5 102.7 225.0 300.9
">
</APPLET>
Chapter 8 � Data Sources 119

8.6 Loading Data from a Swing TableModel

The JCChartSwingDataSource class enables you to use any type of Swing
TableModel data object for the chart. TableModel is typically used for Swing JTable
components, so your application may already have created this type of data object.

JCChartSwingDataSource “wraps” around a TableModel object, so that the data
appears to the chart in the format it understands.

This data source is available through the SwingDataModel property in the
SimpleChart and MultiChart Beans. To use it, prepare your data in a Swing
TableModel object and set the SwingDataModel property to that object.

8.7 Loading Data from an XML Source

8.7.1 XML Primer

XML – eXtensible Markup Language – is a scaled-down version of SGML
(Standard Generalized Markup Language), the standard for creating a document
structure. XML was designed especially for Web documents, and allows designers to
create customized tags (“extensible”), thereby enabling common information formats
for sharing both the format and the data on the Internet, intranets, et cetera.

XML is similar to HTML in that both contain markup tags to describe the contents
of a page or file. But HTML describes the content of a Web page (mainly text and
graphic images) only in terms of how it is to be displayed and interacted with. XML,
however, describes the content in terms of what data is being described. This means
that an XML file can be used in various ways. For instance, an XML file can be
utilized as a convenient way to exchange data across heterogeneous systems. As
another example, an XML file can be processed (for example, via XSLT [Extensible
Stylesheet Language Transformations]) in order to be visually displayed to the user
by transforming it into HTML.

Here are links to more information on XML.

http://www.w3.org/XML/1999/XML-in-10-points.html – W3C (World Wide Web
Consortium)’s “XML in 10 points” summary, which is a good introduction

http://www.w3.org/XML/ – another W3C site; contains exhaustive information on
standards. Of particular note are the XML schema 1 (structures) and XML schema 2
(datatypes) working drafts. They make up an extension that specifies how to
constrain XML documents to particular schema. This is important if you want to
represent database data or object-oriented data as XML.

http://www.javasoft.com/xml/tutorial_intro.html – Sun’s XML site

http://www.oasis-open.org/cover/xml.html – thorough list of links to XML papers and
ongoing work
120 Part I � Using JClass Chart

http://www.w3.org/XML/
http://www.javasoft.com/xml/tutorial_intro.html
http://www.oasis-open.org/cover/xml.html
http://www.w3.org/XML/1999/XML-in-10-points.html

8.7.2 Using XML in JClass

In order to work with XML in your programs or even to compile the JClass XML
examples, you will need to have jaxp.jar and crimson.jar in your CLASSPATH; these
files are distributed with JClass Chart – you can find them in JCLASS_HOME/lib/.

JClass Chart can accept XML data formatted to the specifications outlined in
com.klg.jclass.chart.data.JCXMLDataInterpreter. This public class extends
JCDataInterpreter and implements an interpreter for the JClass Chart XML data
format. JCXMLDataInterpreter relies on an input stream reader to populate the
specified BaseDataSource class.

Data can be specified either by series or by point. This is fully explained below.

Examples of XML in JClass
For XML data source examples, see the XMLArray, XMLArrayTrans, and
XMLGeneral examples in JCLASS_HOME/examples/chart/datasource. These use the
array.xml, arraytrans.xml, and general.xml data files, respectively.

Interpreter
The interpreter, which converts incoming data to the internal format used by
JClass Chart, must be explicitly set by the user when loading XML-formatted data.
The interpreter to use for this purpose is
com.klg.jclass.chart.data.JCXMLDataInterpreter.

Many constructors in the various data sources in JClass Chart take the abstract class
JCDataInterpreter, which is extended by JCXMLDataInterpreter. It is possible for
the user to create a custom data format and a custom data interpreter by extending
JCDataInterpreter.

Here are a few code examples that load XML data using JClass Chart’s XML
interpreter, JCXMLDataInterpreter:

ChartDataModel cdm = new JCFileDataSource(fileName,
new JCXMLDataInterpreter());

ChartDataModel cdm = new JCURLDataSource(codeBase, fileName,
new JCXMLDataInterpreter());

ChartDataModel cdm = new JCStringDataSource(string,
new JCXMLDataInterpreter());

8.7.3 Specifying Data by Series

When “specifying by series”, there can be any number of <Series> tags. Within each
<Series> tag, there can be an optional <SeriesLabel> tag. Within each <Series>
tag, there can be any number of <XData> tags (these tags represent the x values for
that series). If there are no <XData> tags in any <Series> tag, a single x array is
generated, starting at 1 and proceeding in increments of 1.

If only one series has <XData> tags, then that list of x data is used for all series.
If more than one series has <XData> tags, those tags are used only for the series in
which they are located.
Chapter 8 � Data Sources 121

Within each <Series> tag, there must be at least one <YData> tag (generally there
will be many). <YData> tags represent the y values for that series.

If the number of x values and y values do not match within one series, the one with
the fewer number of values is padded out with Hole values.

Here is an example of an XML data file specifying data by series.

<?xml version="1.0"?>
<!DOCTYPE JCChartData SYSTEM "JCChartData.dtd">
<JCChartData Name="My Chart" Hole="MAX">

<PointLabel>Point Label 1</PointLabel>
<PointLabel>Point Label 2</PointLabel>
<PointLabel>Point Label 3</PointLabel>
<PointLabel>Point Label 4</PointLabel>
<Series>

 <SeriesLabel>Y Axis #1 Data</SeriesLabel>
 <XData>1</XData>
 <XData>2</XData>
 <XData>3</XData>
 <XData>4</XData>
 <YData>1</YData>
 <YData>2</YData>
 <YData>3</YData>
 <YData>4</YData>

</Series>
<Series>

 <SeriesLabel>Y Axis #2 Data</SeriesLabel>
 <YData>1</YData>
 <YData>4</YData>
 <YData>9</YData>
 <YData>16</YData>

</Series>
</JCChartData>

This format is similar to both the array and the general formats of the default chart
data source.

8.7.4 Specifying Data by Point

In the “specifying by point” format, there can be any number of <Point> tags.
Within each <Point> tag, there can be one optional <PointLabel> tag. Within each
<Point> tag, there can be one optional <XData> tag (these tags represent the x value
of that point). If there are no <XData> tags in any of the <Point> tags, x values are
generated, starting at 1 and then increasing in increments of 1.

If some <Point> tags have <XData> tags but others do not, the missing ones will be
replaced with Hole values.

Within each <Point> tag, there must be at least one <YData> tag (in general, there
will be many). <YData> tags represent the y values of each series at this point.

There should always be the same number of <YData> tags within each <Point> tag. If
there are not, then the largest number of <YData> tags in any one <Point> tag is used
as the number of series, and the other lists of y values will be padded with Hole
values.
122 Part I � Using JClass Chart

Here is an example of an XML data file specifying data by point.

<?xml version="1.0"?>
<!DOCTYPE JCChartData SYSTEM "JCChartData.dtd">
<JCChartData Name="MyChart">
<SeriesLabel>Y Data</SeriesLabel>
<SeriesLabel>Y 2 Data</SeriesLabel>
<Point>
 <PointLabel>Point Label 1</PointLabel>
 <XData>1</XData>
 <YData>1</YData>
 <YData>1</YData>
</Point>
<Point>
 <PointLabel>Point Label 2</PointLabel>
 <XData>2</XData>
 <YData>2</YData>
 <YData>4</YData>
</Point>
<Point>
 <PointLabel>Point Label 3</PointLabel>
 <XData>3</XData>
 <YData>3</YData>
 <YData>9</YData>
</Point>
<Point>
 <PointLabel>Point Label 4</PointLabel>
 <XData>4</XData>
 <YData>4</YData>
 <YData>16</YData>
</Point>
 </JCChartData>

This format is similar to the transposed array format of the default chart data source.

8.7.5 Labels and Other Parameters

<PointLabel> and <SeriesLabel> tags
<PointLabel> and <SeriesLabel> tags are optional with both the specifying by
series or specifying by point methods. If there are more point labels than data points,
or more series labels than data series, the extra labels are ignored. If there are more
data points than point labels, or more data series than series labels, then the list is
padded with blank labels. If there are no point labels or no series labels at all, the
chart default is used – no point labels and series labels containing “Series 1”,
“Series 2”, et cetera.

Name and Hole parameters
The Name and Hole parameters of the JCChartData tag are also optional. Name can be
any String. Hole can be a value, the String MIN (meaning Double.MIN_VALUE) or the
String MAX (meaning Double.MAX_VALUE). To represent virtual hole values in an
XData or YData tag, use the word Hole. Any XData or YData tag can contain a
value, the String MIN, the String MAX, or the String Hole.

See the “Specifying Data by Series” and “Specifying Data by Point” sections to view
these elements in code samples.
Chapter 8 � Data Sources 123

8.8 Data Formats

JCFileDataSource, JCURLDataSource, JCInputStreamDataSource,
JCStringDataSource, and JCAppletDataSource all require that data be pre-
formatted. The following table illustrates the formatting requirements of data for pre-
built data sources. There are two main ways to format data: Array and General.

Array-formatted data shares a single series of x data among one or more series of y
data. General-formatted data specifies a series of x data for every series of y data.

Array format is the recommended standard, because it works well with all of the
chart types. General Format may not display data properly in Stacking Bar, Stacking
Area, Pie Charts, and Bar Charts.

Note that for data arrays in Polar charts, (x, y) coordinates in each data set will be
interpreted as (theta, r). For array data, the x array will represent a fixed theta value
for each point.

In Radar and Area Radar charts, only array data can be used. (x, y) points will be
interpreted in the same way as for Polar charts (above), except that the theta (that is,
x) values will be ignored. The circle will be split into nPoints segments with nSeries
points drawn on each radar line.

General format is intended for use in cases where you want to display multiple X-
axis values on the same chart.

The following table shows four formatted data examples. An explanation of each
element follows.
124 Part I � Using JClass Chart

8.8.1 Formatted Data Examples

Array Data Format (Recommended)

ARRAY 2 3 # 2 series of 3 points
HOLE 10000 # Use only if custom hole value needed
’Point 0’ ’Point 1’ ’Point 2’ # Optional Point-labels
X-values common to all points
 1.0 2.0 3.0
Y-values
’Series 0’ 50.0 75.0 60.0 # Series-label is optional
’Series 1’ 25.0 10.0 50.0

Transposed Array Data Format (same data as previous)

ARRAY 2 3 T # 2 series of 3 points, Transposed
HOLE 10000
 ’’ ’Series 0’ ’Series 1’ # Optional Series-labels
X-values Y0-values Y1-values
’Point 0’ 1.0 50.0 25.0 # Point-labels are optional
’Point 1’ 2.0 75.0 10.0
’Point 2’ 3.0 60.0 50.0

General Data Format (Use if X data is different for each series)

GENERAL 2 4 # 2 series, max 4 points in each
HOLE -10000 # Use only if custom hole value needed
’Series 0’ 2 # 2 points, optional series label
 1.0 3.0 # X-values
 50.0 60.0 # Y-values
’Series 1’ 4 # 4 points
 2.0 2.5 3.5 5.0 # X-values
 45.0 60.0 HOLE 70.0 # Y-values, including data hole

Transposed General Data Format (same data as previous)

GENERAL 2 4 T # 2 series, max 4 points in each, Transposed
HOLE -10000
’Series 0’ 2 # 2 points, optional series label
X Y
 1.0 50.0
 3.0 60.0
’Series 1’ 4 # 4 points
X Y
 2.0 45.0
 2.5 60.0
 3.5 HOLE
 5.0 70.0
Chapter 8 � Data Sources 125

8.8.2 Explanation of Format Elements

Initialization – Data Layout, Data Size, Hole Value
The first (non-comment) line must begin with either “ARRAY” or “GENERAL” followed
by two integers specifying the number of series and the number of points in each
series. For example:

 # This is an Array data file containing 2 series of 4 points
 ARRAY 2 4

The only difference with General data is that the second integer specifies the
maximum number of points possible for each series:

 # A General data file, 5 series, maximum 10 points
 GENERAL 5 10

The second line can optionally specify a data hole value. A hole value is the number
that is interpreted by the chart as missing data. There should be only one hole value
per ChartDataView class. Use a hole value if you know that a particular value in the
data should be ignored in the chart:

 HOLE 10000

You can also indicate that any particular point is a hole by specifying the word
“HOLE” for that X- or Y-value. For example:

 50.0 75.0 HOLE 70.0

Note: If the hole value is later changed in the data view, values in the x and y data
previously set with hole values will not change their values and will now draw.

Adding Comments
You can use comments throughout the data file to make it easier for people to
understand. Any text on a line following a “#” symbol are treated as comments and
are ignored.

Point Labels
The third line can optionally specify text labels for each data point, which can be used
to annotate the X-axis. Point-labels are generally only useful with Array data; if
specified for General data they apply to the first series. The following shows how to
specify Point-labels:

 ’Point 1’ ’Point 2’ ’Point 3’ # Optional Point-labels

The Data – Array layout
The rest of the file contains the data to be charted. Array layout uses the first line of
data as X-values that are common to all points. Subsequent lines specify the Y-values
for each data series:

 1.0 2.0 3.0 4.0 # X-values
 150.0 175.0 160.0 170.0 # Y-values, series 0
 125.0 100.0 225.0 300.0 # Y-values, series 1
 # Y-values continue, until end of data
126 Part I � Using JClass Chart

The Data – General layout
General layout provides more flexibility. For each series, the first line of data
specifies the number of points in the series (this cannot be greater than the maximum
number of points defined earlier). The second line specifies the X-values for that
series; the third line specifies the Y-values:

 4 # Series 0, 4 points
 50.0 75.0 60.0 70.0 # X-values
 25.0 10.0 25.0 30.0 # Y-values
 # Next series follows, until end of data

Series Labels
You can optionally specify text labels for each series, which can be displayed in the
legend. Series labels are enclosed in single-quotes. In Array data, the label appears at
the start of each line of Y-values, for example:

 ’Series label’ 150.0 175.0 160.0 170.0 # Y-values, series 0

In General data, the label appears at the start of the line defining the number of
points in that series, for example:

 ’Series label’ 4 # Series 0, 4 points
 50.0 75.0 60.0 70.0 # X-values
 25.0 10.0 25.0 30.0 # Y-values

Transposed Data
JClass Chart can also interpret transposed data, where the meaning of the data series
and points is switched. Note that transposing data also transposes series and point
labels. To indicate that the data is transposed, add a “T” to the first line specifying the
data layout and size. The following illustrates how data is interpreted when
transposed:

 ARRAY 2 3 T
 # X-values Y0-values Y1-values
 1.0 150.0 125.0
 2.0 175.0 100.0
 3.0 160.0 225.0
Chapter 8 � Data Sources 127

8.9 Data Binding: Specifying Data from Databases

In order to chart data from a database, your application must be able to establish a
connection, perform necessary queries on the data, and then put the data into a
chartable format.

This type of database connectivity is often called ‘data binding’ and components that
can be connected to a database are considered ‘data bound’. JClass Chart is a data
bound component.

Perhaps the easiest way to bind a chart to a database is to use one of the data binding
Beans (DSdbChart or JBdbChart) in an IDE or the BeanBox. There are Beans for
connecting to a database using Borland JBuilder and the JClass DataSource. See the
Bean Reference for complete details on using these Beans in an IDE.

More complex chart features, however, can only be accessed programmatically. To
do data binding programmatically, you can use one of the solutions listed in the table
below:

The following sections provide a brief outline of these different data binding
methods.

8.9.1 Data Binding using JDBCDataSource

JDBCDataSource is not a full data binding solution. It is a data source that you can use
to chart data from an SQL Result Set. It does not perform any binding operations
such as connecting to, or querying the database. You will have to provide that
functionality.

To use it, you just attach an instance of JDBCDataSource to your chart and pass it a
Result Set from your application, as follows:

chart.getDataView(0).setDataSource(new JDBCDataSource(resultSet));

Class Use with:

JCChart � JDBCDataSource
� An application that provides connection to database and passes

an SQL result set to JCDBCDataSource

DSdbChart � JClass DataSource component

JBdbChart � Borland JBuilder 3.0+ components
128 Part I � Using JClass Chart

8.9.2 Data Binding with JBuilder

JBdbChart allows you to bind to JBuilder’s DataSet, for a full data binding solution.
The following example illustrates how to connect to the necessary JBuilder components:

package examples.chart.db.jbuilder;

import java.awt.*;
import javax.swing.JFrame;
import com.borland.dx.sql.dataset.*;
import com.klg.jclass.chart.db.jbuilder.*;

/**
 * This file was generated using JBuilder
 * data binding. It is intended to demonstrate
 * the code generated when using JBuilder's
 * QueryDataSet and JBdbChart.
 *
 * (Code has been reindented to conform to Sitraka
 * coding standard.)
 */
public class JBuilderDBChart extends JFrame {

Database database1 = new Database();

QueryDataSet queryDataSet1 = new QueryDataSet();

JBdbChart jBdbChart1 = new JBdbChart();

public JBuilderDBChart() {
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
}

private void jbInit() throws Exception {
 queryDataSet1.setQuery(new
com.borland.dx.sql.dataset.QueryDescriptor(database1, "SELECT
OrderDetails.OrderDetailID,OrderDetails.OrderID,OrderDetails.ProductID,
OrderDetails.DateSold,O"
+

"OrderDetails.Quantity,OrderDetails.UnitPrice,OrderDetails.SalesTax,Ord
erDetails.LineTotal
" +
 "FROM OrderDetails", null, true, Load.ALL));
 database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:JClassDemo",
"dba", "sql", false, "sun.jdbc.odbc.JdbcOdbcDriver"));
 jBdbChart1.setDataSet(queryDataSet1);
 jBdbChart1.setDataBindingConfig(new
com.klg.jclass.chart.db.DataBindingConfigWrapper(
 false, 0, 100, "OrderDetailID",
 new String[] {"UnitPrice","SalesTax"}));
 this.getContentPane().add(jBdbChart1, BorderLayout.NORTH);
 }
Chapter 8 � Data Sources 129

public static void main(String args[]) {
 JBuilderDBChart f = new JBuilderDBChart();
 f.pack();
 f.show();
}
}

8.9.3 Data Binding with JClass DataSource

JClass DataSource is a full data binding solution. It is a robust hierarchical, multiple-
platform data source that you can use to bind and query any JDBC compatible
database. It can also bind to platform-specific data solutions in JBuilder.

JClass DataSource is available only in JClass DesktopViews (which also contains
JClass Chart, JClass Chart 3D, JClass Elements, JClass Field, JClass HiGrid, JClass
JarMaster, JClass LiveTable, and JClass PageLayout). Visit http://www.sitraka.com for
information and downloads.

To bind a chart to a database through JClass DataSource, use DSdbChart.

The following example illustrates the main parts of binding with DSdbChart:

package examples.chart.db.datasource;
//JDK specific
import java.awt.BorderLayout;
import java.awt.Event;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

import javax.swing.JPanel;
import javax.swing.JFrame;

//JClass datasource specific
import com.klg.jclass.datasource.TreeData;
import com.klg.jclass.datasource.swing.DSdbJNavigator;
import examples.datasource.jdbc.DemoData;

//JClass Chart specific
import com.klg.jclass.chart.JCAxis;
import com.klg.jclass.chart.EventTrigger;
import com.klg.jclass.chart.db.datasource.DSdbChart;

import com.klg.jclass.util.swing.JCExitFrame;

public class DataBoundChart extends JPanel {

protected DSdbChart chart = null;
protected DSdbJNavigator navigator = null;
protected TreeData treeData = null;
protected int currentRow = 0;

public DataBoundChart() {
setLayout(new BorderLayout());

// Create DataSource data-bound Chart instance
chart = new DSdbChart();
// Chart formatting
130 Part I � Using JClass Chart

http://www.sitraka.com

makeAFancyChart();

// Create DataSource instance
 treeData = new DemoData();

// Connect Chart instance to DataSource instance
chart.setDataSource(treeData, "Orders|OrderDetails");
// Select point label column from DataSource meta data
chart.setPointLabelsColumn("OrderDetailID");
chart.setName("Order Details");

navigator = new DSdbJNavigator();
navigator.setDataBinding(treeData, "Orders");

add(navigator, BorderLayout.SOUTH);
add(chart, BorderLayout.CENTER);

}

/**
 * Setting some of the chart parameters to make it look fancy
 */
protected void makeAFancyChart() {

chart.getChartArea().getXAxis(0).setAnnotationMethod(JCAxis.POINT_LABEL
S);

chart.getLegend().setVisible(true);
chart.setForeground(java.awt.Color.yellow);
chart.setBackground(java.awt.Color.gray);
chart.getDataView(0).setChartType(DSdbChart.STACKING_AREA);
chart.getHeader().setVisible(true);
chart.getFooter().setVisible(true);

chart.setCustomizerName("jclass.chart.customizer.swing.ChartCustomizer"
);
 chart.setAllowUserChanges(true);
 chart.setTrigger(0, new EventTrigger(Event.META_MASK,
EventTrigger.CUSTOMIZE));
}

/**
 * main function
 */
public static void main(String[] args) {

DataBoundChart dbChart = new DataBoundChart();
JCExitFrame frame = new JCExitFrame("This is a data bound chart");

frame.getContentPane().add(dbChart);
frame.pack();
frame.setSize(500, 400);
frame.show();

}

}

Chapter 8 � Data Sources 131

8.10 Making Your Own Chart Data Source

8.10.1 The Simplest Chart Data Source Possible

In order for a data source object to work with JClass Chart, it must implement the
ChartDataModel interface. The EditableChartDataModel interface is an extension of
ChartDataModel and can be used when you want to allow the data source to be
editable. The LabelledChartDataModel and the HoleValueChartDataModel
interfaces can be used in conjunction with ChartDataModel to extend the
functionality of ChartDataModel to allow for label values (via the
LabelledChartDataModel interface) and hole values (via the
HoleValueChartDataModel interface).

The ChartDataModel interface is intended for use with existing data objects. It allows
Chart to ask the data source for the number of data series, and the x-values and y-
values for each data series. The interface looks like this:

public double[] getXSeries(int index);
public double[] getYSeries(int index);
public int getNumSeries();

Basically, JClass Chart organizes data based on data series. Each series has x values
and y values, returned by getXSeries() and getYSeries(), respectively. It is
expected that, for a given series index, the x series and y series will be the same
length.

If the x data is the same for all y data, then the same x series can be returned for each
value. JClass Chart will automatically re-use the array.

As an example, consider SimplestDataSource in examples.chart.datasource
example:

/**
 * This example shows the simplest possible chart data source.
 * The data source contains two data series, held in "xvalues"
 * and "yvalues" below.
 */
public class SimplestDataSource extends JPanel implements
ChartDataModel {

// x values for chart.
protected double xvalues[] = { 1, 2, 3, 4 };
// y values.
protected double yvalues[][] = { {20, 10, 30, 25}, {30, 22, 10, 40}};

/**
 * Retrieves the specified x-value series
 * In this example, the same x values are used regardless of
 * the index.
 * @param index data series index
 * @return array of double values representing x-value data
 */
public double[] getXSeries(int index) {

return xvalues;
}

132 Part I � Using JClass Chart

/**
 * Retrieves the specified y-value series
 * In this example, yvalues contains the y data.
 * @param index data series index
 * @return array of double values representing x-value data
 */
public double[] getYSeries(int index) {

return yvalues[index];
}

/**
 * Retrieves the number of data series.
 * In this example, there are only two data
 * series.
 */
public int getNumSeries() {

return yvalues.length;
}

There are two series in this example. The x data is repeated for both series, and is
stored in an array of doubles (xvalues). The y data is stored in an array of arrays of
doubles (yvalues). Each sub-array is the same length as xvalues.

Note: You can run this example from JCLASS_HOME > Examples > Chart >
DataSource > SimplestDataSource.

8.10.2 LabelledChartDataModel – Labelling Your Chart

Sometimes, it is important to label each data series and each point in a graph.
This information can be added to a data source using the LabelledChartDataModel
interface.

The LabelledChartDataModel interface allows specification of series and point labels
for your data. It is an optional part of the chart data model, but is very commonly
used:

public int getNumSeries();
public String[] getPointLabels();
public String[] getSeriesLabels();
public String getDataSourceName();

The getPointLabels() call returns the point labels for all points in the chart. The
size of the String array should correspond with the number of items in the XSeries
and YSeries arrays.

The getSeriesLabels() call returns the series labels for the chart. The size of the
String array should correspond to the value returned by getNumSeries(). Series
labels appear in the legend.

The getDataSourceName() returns the name of the data source. This appears in the
chart as the title of the legend.
Chapter 8 � Data Sources 133

As an example, consider LabelledDataSource in JCLASS_HOME/examples/chart/
datasource/ .

/**
 * This example shows how to add point and series labelling
 * to a data source. It extends SimplestDataSource and
 * implements the LabelledChartDataModel interface to add
 * this information. The result can be seen on the X-axis
 * (point labels representing quarters) and in the legend
 * (title, series names).
 */
public class LabelledDataSource extends SimplestDataSource implements
LabelledChartDataModel {

// Point labels
protected String pointLabels[] = { "Q1", "Q2", "Q3", "Q4" };

// Series labels
protected String seriesLabels[] = { "West", "East" };

/*
 * Retrieves the labels to be used for each point in a
 * particular data series.
 * @return array of point labels
 */
public String[] getPointLabels() {

return pointLabels;
}
/**
 * Retrieves the labels to be used for each data series
 */
public String[] getSeriesLabels() {

return seriesLabels;
}

/**
 * Retrieves the name for the data source
 */
public String getDataSourceName() {

return "Sales By Region";

}

As noted, this data source extends SimplestDataSource, adding in the required
methods for returning point labels – getPointLabels() – and series labels –
getSeriesLabels().

Note that the number of items in the array returned by getSeriesLabels() should
equal the number returned by getNumSeries().

Note that the number of items in the array returned by getPointLabels() should
equal the number of items in the array returned by getXSeries() and getYSeries().
(In cases where the x data is unique for each series and each series has a possibly
different number of points, the point labels are applied to the first series.)

Note: You can run this example from JCLASS_HOME > Examples > Chart >
DataSource > LabelledDataSource.
134 Part I � Using JClass Chart

8.10.3 EditableChartDataModel – Modifying Your Data

If you want to allow users to modify data using the edit trigger in JClass Chart, your
data source must implement EditableChartDataModel. The
EditableChartDataModel interface extends ChartDataModel, adding a single method
that allows Chart to modify data in the data source:

public boolean setDataItem(int seriesIndex, int pointIndex,
double newValue);

The seriesIndex and pointIndex values are used to save the data sent in newValue.
Note that EditableChartDataModel only allows for y values to be changed. In other
words, newValue is a y value!

As an example, consider EditableDataSource in JCLASS_HOME/examples/chart/
datasource/ .

/**
 * This example shows how to make a data source editable
 * by adding the EditableChartDataModel interface to
 * the object.
 */
public class EditableDataSource extends LabelledDataSource implements
EditableChartDataModel {

/**
 * Change the specified y data value.
 * In this example, the series and point indices index
 * into the yvalues array originally defined in SimplestDataSource.
 *
 * @param seriesIndex series index for the point to be changed.
 * @param pointIndex point index for the point to be changed.
 * @param newValue new y value for the specified point
 * @return boolean value indicating whether the new value was
 * accepted. "true" means value was accepted.
 */
public boolean setDataItem(int seriesIndex, int pointIndex, double
newValue) {

if (newValue < 0) return false;
yvalues[seriesIndex][pointIndex] = newValue;
return true;

}

In this example, the value is saved back into the yvalues array from
SimplestDataSource, using the seriesIndex and pointIndex values to index to the
appropriate array member.

This example extends LabelledDataSource, adding the setDataItem() method to
allow chart to modify the data in the data source.

Note: You can run this example from JCLASS_HOME > Examples > Chart >
DataSource > SimplestDataSource.
Chapter 8 � Data Sources 135

8.10.4 HoleValueChartDataModel – Specifying Hole Values

If you want to supply a specific hole value along with your data, your data source
must implement the HoleValueChartDataModel interface.

As noted in Explanation of Format Elements, a hole value is a particular value in the
data that should be ignored by the chart. There should be only one hole value per
data source.

The HoleValueChartDataModel interface has one method, getHoleValue(). This
method retrieves the hole value for the data source.

8.11 Making an Updating Chart Data Source

Quite often, the data shown in JClass Chart is dynamic. This kind of data requires
creation of an updating data source. An updating data source is capable of informing
chart that a portion of the data has been changed. Chart can then act on the change.

JClass Chart uses the standard AWT/Swing event/listener mechanism for passing
changes between the chart data source and JClass Chart. At a very high level,
JClass Chart is a listener to data source events that are fired by the data source.

8.11.1 Chart Data Source Support Classes

There are a number of data source related support classes included with
JClass Chart. These classes make it easier to build updating data sources.

ChartDataEvent and ChartDataListener
The ChartDataListener interface is implemented by objects interested in receiving
ChartDataEvents. Most often, the only ChartDataListener is JClass Chart itself.
ChartDataEvent and ChartDataListener give data sources away to send update
messages to Chart.

The ChartDataListener interface has only one method:

public void chartDataChange(ChartDataEvent e);

This method is used by the data source to inform the listener of a change. In most
systems, only JClass Chart need implement this interface.

The ChartDataEvent object has three immutable properties: Type, SeriesIndex, and
PointIndex. SeriesIndex and PointIndex are used to specify the data affected by
the posted change. If all data is affected, the enum values ALL_SERIES and
ALL_POINTS can be used.
136 Part I � Using JClass Chart

../api/com/klg/jclass/chart/HoleValueChartDataModel.html

Type is used to specify the kind of update:

ChartDataManageable and ChartDataManager

This interface is used by a data source to tell Chart that it will be sending
ChartDataEvents to Chart. Without this interface, there is no way for Chart to know
that it has to attach itself as a ChartDataListener to the data source.

The only method in ChartDataManageable returns a ChartDataManager:

public abstract ChartDataManager getChartDataManager();

A ChartDataManager is an object knows how to register and deregister
ChartDataListeners. Chart uses this object to register itself as a listener to events
from the data source.

The quickest way to get a data source set up is to extend or use ChartDataSupport.

Message Meaning

ADD_SERIES A new data series has been added to the end of the existing
series in the data source

APPEND_DATA Used in conjunction with the FastUpdate feature, this tells the
listener that data has been added to the existing series. Please
see the FastUpdate section for full details.

CHANGE_CHART_TYPE A request from the data source to change the chart type.
The chart type is held inside seriesIndex

INSERT_SERIES A new data series has been added; seriesIndex indicates
where the series should be added

RELOAD The data has completely changed; the difference here is that
the dimensions of the data source (that is, number of data
series and number of points) has not changed

RELOAD_ALL_POINT_LABELS Tells the listener to reload all point labels

RELOAD_ALL_SERIES_LABLES Tells the listener to reload all series labels

RELOAD_DATA_SOURCE_NAME Tells the listener the data source name has changed

RELOAD_POINT Single data value has changed, as specified by seriesIndex
and pointIndex

RELOAD_POINT_LABEL Tells the listener to reload the point label specified by
pointIndex

RELOAD_SERIES An entire data series has changed, as specified by seriesIndex
(pointIndex ignored)

RELOAD_SERIES_LABEL Tells the listener to reload the series label specified by
seriesIndex

REMOVE_SERIES Removes the series at seriesIndex

RESET The data source has completely changed
Chapter 8 � Data Sources 137

ChartDataSupport

ChartDataSupport provides a default implementation of ChartDataManager. It will
manage a list of ChartDataListeners. It also provides two convenience methods for
firing events to the listeners:

public void fireChartDataEvent(int type, int seriesIndex, int
pointIndex)

public void fireChartDataEvent(ChartDataEvent evt)

The first method listed above is the most convenient. Given a ChartDataEvent Type,
SeriesIndex and PointIndex, it constructs and fires a ChartDataEvent to all
listeners. The second method requires that you construct the ChartDataEvent
yourself.

Creating an Updating Data Source

If your datasource either extends or contains ChartDataSupport, sending updates
from the data source to the chart is easy. Simple call fireChartDataEvent() with the
event you wish to send.

fireChartDataEvent(ChartDataEvent.RESET, 0, 0);

To have JClass Chart automatically added as a listener, your data source needs to
implement the ChartDataManageable interface and to return the ChartDataSupport
instance in the getChartDataManager() method.

Chart Data Source Hierarchy
138 Part I � Using JClass Chart

9
Text and Style Elements

Header and Footer Titles � Legends � Chart Labels

Chart Styles � Borders � Fonts
Colors � Positioning Chart Elements

3D Effect

This chapter describes the different formatting elements available within
JClass Chart, and how they can be used. If you are developing your chart application
using one of the JClass Chart Beans, please refer to the Bean Reference chapter
instead.

9.1 Header and Footer Titles

A chart can have two titles, called the header and footer. By default they are JLabel
instances and behave accordingly (A JLabel class is a Swing class.) A JLabel object
can display text, an image, or both.

You can specify where in the label’s display area the label’s contents are aligned by
setting the vertical and horizontal alignment. By default, labels are vertically
centered in their display area. Text-only labels are left-aligned, by default. Image-
only labels are horizontally centered by default.

A title consists of one or more lines of text with an optional border, both of which
you can customize. You can also set the text alignment, positioning, colors, and font
used for the header or footer.

See “How to Use Labels” in the Java Tutorial for further documentation.
139

9.2 Legends
A legend shows the visual attributes (or ChartStyle) used for each series in the chart,
with text that labels the series. You can customize the series label and positioning.
The legend is a JComponent, and all properties such as border, colors, font, etc, apply.

Figure 25 Vertically oriented legend anchored NorthEast

New Location for the Legend Classes
In order to make the legend classes more accessible to the JClass products, all four
legend classes – JCLegend, JCGridLegend, JCMultiColLegend, and JCLegendItem –
have been moved from com.klg.jclass.chart to com.klg.jclass.util.legend.

How will this affect you?

For most users, all you will need to do when converting from 4.0.x to 4.5 and higher,
is to change the import statements to import the legend classes (JCLegend,
JCGridLegend, JCMultiColLegend, and JCLegendItem) from the
com.klg.jclass.util.legend package.

This converting can be done either by hand or via running the provided porting
script (please see the second bullet). Each method will yield the same result.

� Convert the import statements by hand by changing these import statements
import com.klg.jclass.chart.JCLegend;
import com.klg.jclass.chart.JCGridLegend;
import com.klg.jclass.chart.JCMultiColLegend;
import com.klg.jclass.chart.JCLegendItem;
import com.klg.jclass.chart.*;

to

import com.klg.jclass.util.legend.JCLegend;
import com.klg.jclass.util.legend.JCGridLegend;
import com.klg.jclass.util.legend.JCMultiColLegend;
import com.klg.jclass.util.legend.JCLegendItem;
import com.klg.jclass.chart.*; import com.klg.jclass.util.legend.*;
140 Part I � Using JClass Chart

� Convert the import statements via running the porting script. This Perl
script changes the above import statements automatically. The porting script is
named legend4to45.pl and is provided at JCLASS_HOME/bin/. You must have Perl
installed on your system for the script to work.

Here is an example of how one would run the script:

perl legend4to45.pl filename

where filename is the name of the file you want to convert from 4.0.x to 4.5.

As noted, for most users the above changes to the import statements are all that is
required when converting from 4.0.x to 4.5. However, for users who are already
overriding JCLegend and implementing custom layouts, converting may require
dealing with changes to JClass Chart’s JCLegend and JCLegendItem classes. These
items are not covered by the porting script so will need to be done manually.

1. These fields have been added to JCLegendItem:

� int drawType (determines drawing type; takes as its parameter one of
JCLegend.NONE, JCLegend.BOX, JCLegend.IMAGE, JCLegend.IMAGE_OUTLINED,
JCLegend.CUSTOM_SYMBOL, or JCLegend.CUSTOM_ALL); and

� Object itemInfo (refers to data related to this legend item – in JClass Chart, this
is a JCDataIndex object containing the data view and series to which this legend
item is related).

2. This new Object itemInfo field replaces these three fields:

� ChartDataView view (the view associated with the ChartDataView);

� ChartDataViewSeries series (the series associated with the
ChartDataViewSeries); and

� int seriesIndex (the series index associated with the ChartDataViewSeries).

3. JCLegend’s drawLegendItem(Graphics gc, JCChart chart, Font useFont,
JCLegendItem thisItem) has been changed to:

� drawLegendItem(Graphics gc, Font useFont, JCLegendItem thisItem)

Legend Text and Orientation
The legend displays the text contained in the Label property of each Series in a
DataView. The VisibleInLegend property of the series determines whether the
Series will appear in the Legend.

SeriesLabels support the use of HTML tags. The use of HTML tags overrides the
default Font and Color properties of the label. Please note that HTML labels may
not work with PDF, PS, or PCL encoding.

Use the legend Orientation property to lay out the legend horizontally or vertically.

Legend Positioning
Use the legend Anchor property to specify where to position the legend relative to
the ChartArea. You can select from eight compass points around the ChartArea.

See Positioning Chart Elements on page 158 for more information.
Chapter 9 � Text and Style Elements 141

9.2.1 Customizing Legends

JClass provides two types of legend objects: JCGridLegend (the default) for a single-
column layout and JCMultiColLegend for a multiple-column layout. If these legends
do not provide the desired functionality, the user can customize the legend using the
JCLegend Toolkit.

Single-Column Legends
The classic single-column legend layout is provided by JCGridLegend. This is the
default layout in JClass Chart.

Multi-Column Legends
Multi-column legend layout is available using JCMultiColumnLegend. To designate
this layout, follow these steps:

1. create an instance

2. set the number of rows and columns

3. set the legend property of the JClass Chart to this instance to create a multi-col-
umn legend.

Multi-Column Legends example
JCMultiColLegend mcl = new JCMultiColumnLegend();
mcl.setNumColumns(2);
c.setLegend(mcl);

This example will create a legend for the current chart that has two columns. The
number of rows depends on the number of items in the legend. To fix the number of
rows, use setNumRows(). Both the number of rows and the number of columns are
variable by default.

To reset the number of rows and columns to a variable state after they have been
fixed, call the appropriate set method with a negative value. If both the NumRows and
NumColumns properties are set to fixed values, the legend will be of that exact size and
will ignore any extra items.

JCLegend Toolkit
The JCLegend Toolkit allows you the freedom to design your own legend
implementations. The options range from simple changes, such as affecting the order
of the items in the legend, to providing more complex layouts.

The JCLegend Toolkit consists of a JCLegend class that can be subclassed to provide
legend layout rules and two interfaces: JCLegendPopulator and JCLegendRenderer.
JCLegendPopulator is implemented by classes wishing to populate a legend with
data, and JCLegendRenderer is implemented by a class that wishes to help render the
legend’s elements according to the user’s instructions. Examples of how to use the
JCLegend Toolkit are provided in JCLASS_HOME/examples/chart/legend/ .

JCChartLegendManager is the class used by JClass Chart to implement both the
JCLegendPopulator and JCLegendRenderer interfaces, and to provide a built-in
mechanism for itemizing range objects in a legend.
142 Part I � Using JClass Chart

../api/com/klg/jclass/util/legend/JCGridLegend.html
../api/com/klg/jclass/util/legend/JCMultiColLegend.html

Custom Legends – Layout
JClass provides a Legend Toolkit that allows creation of custom legend
implementations. JCLegend is an abstract class with that can be subclassed by users
wishing to customize the legend layout or other legend behavior.

To provide a custom layout, override the method:

public abstract Dimension layoutLegend(List itemList, boolean
vertical, Font useFont)

The itemlist argument is a List containing a Vector for each data view contained
in the chart. Each of these sub-vectors contains one JCLegendItem instance for each
series in the data view and one instance for the data view title.

The vertical argument is true if the orientation of the legend is vertical and false if
the orientation of the legend is horizontal.

The useFont argument contains the default font to use for the legend.

Each item in the legend consists of a text portion and a symbol portion. For example,
in a Plot Chart, the text portion is the name of the series, and is preceded by the
symbol used to mark a point on the chart. For the title of the data view, the text
portion is the name of the data view and there is no symbol.

JCLegendItem is a class that encapsulates an item in the legend with the properties.

Property name Description

Point pos; position of this legend item within the legend

Point symbolPos; position of the symbol within the legend item

Point textPos; position of the text portion within the legend item

Dimension dim; full size of the legend item

Dimension symbolDim; size of the symbol; provided by JCLegend

Dimension textDim; size of the text portion; provided by JCLegend

Rectangle
pickRectangle;

the rectangle to use for pick operations; optional

int drawType; determines drawing type; one of JCLegend.NONE,
JCLegend.BOX, JCLegend.IMAGE,
JCLegend.IMAGE_OUTLINED,
JCLegend.CUSTOM_SYMBOL, or JCLegend.CUSTOM_ALL

Object itemInfo data related to this legend item. In Chart, this is a JCDataIndex
object containing the data view and series to which the legend
item is related.

Object symbol; the symbol if other than the default type; usually null (means
drawLegendItem decides)

Object contents; the text portion; a String or JCString
Chapter 9 � Text and Style Elements 143

When the itemList is passed to layoutLegend, it has been filled in with
JCLegendItem instances representing each data series and data view title. These
instances will have the symbolDim, textDim, symbol, contents, itemInfo, and
drawType already filled in.

The value of drawType will determine whether a particular default symbol type will
be drawn or whether user-provided drawing methods will be called.

The layoutLegend() method is expected to calculate and fill in the pos, symbolPos,
textPos, and dim fields. Additionally, the method must return a Dimension object
containing the overall size of the legend. Optionally, it may also calculate the
pickRectangle member of the JCLegendItem class. The pickRectangle is used in
pick operations to specify the region in the legend that is associated with the series
that this legend item represents. If left null, a default pickRectangle will be
calculated using the dim and pos members.

Any of the public methods in the JCLegend class may be overridden by a user
requiring custom behavior. One such method is:

public int getSymbolSize()

getSymbolSize() returns the size of the legend-calculated symbols to be drawn in
the legend. Default JCLegend behavior sets the symbol size to be equal to the ascent
of the default font that is used to draw the legend text. It is overridable by users who
wish to use a different symbol size. One possible implementation is to use a symbol
size identical to that which appears on the actual chart.

Custom Legends – Population
JCLegendPopulator is an interface that can be implemented by any user desiring to
populate the legend with custom items. This interface comprises two methods that
need to be implemented:

public List getLegendItems(FontMetrics fm)
public boolean isTitleItem(JCLegendItem item)

getLegendItems() should return a List object containing any number of Vector
objects where each Vector object represents one column in the legend. Each Vector
object contains the JCLegendItem objects for that column. In JClass Chart, each
column generally represents one data view.

isTitleItem() should return true or false depending on whether the passed
JCLegendItem object represents a title for the column. This is used to determine
whether a symbol is drawn for a particular legend item.

If implemented, the legend should be notified of the new populator with the
setLegendPopulator() method of JCLegend.
144 Part I � Using JClass Chart

Custom Legends – Rendering
JCLegendRenderer is an interface that can be implemented by any user desiring to
custom render legend items. This interface consists of four methods that need to be
implemented:

public void drawLegendItem(Graphics gc, Font useFont,
JCLegendItem thisItem)

public void drawLegendItemSymbol(Graphics gc, Font useFont,
JCLegendItem thisItem)

public Color getOutlineColor(JCLegendItem thisItem)
public void setFillGraphics(Graphics gc, JCLegendItem thisItem)

JCLegendRenderer also has the capacity to implement custom text objects for
drawing, and is called when the legend cannot interpret anobject placed in the
contents field of the JCLegendItem. This interface consists of one method that needs
to be implemented:

void drawLegendItemText (Graphics gc, Font useFont, JCLegendItem
thisItem);

drawLegendItem() provides a way for a user to define a custom drawing routine for
an entire legend item. It is called when a legend item’s draw type has been set to
JCLegend.CUSTOM_ALL.

drawLegendItemSymbol() provides a way for a user to define a custom drawing
routine for a legend item’s symbol. It is called when a legend item’s draw type has
been set to JCLegend.CUSTOM_SYMBOL.

getOutlineColor() should return the outline color to be used to draw the legend
item’s symbol. If null is returned, the legend’s foreground color will be used.
getOutlineColor() is called when a legend item’s draw type has been set to either
JCLegend.BOX or JCLegend.IMAGE_OUTLINED.

setFillGraphics() should set the appropriate fill properties on the provided
Graphics object for drawing the provided legend item. setFillGraphics() is called
when the legend item’s draw type has been set to JCLegend.BOX.

If implemented, the legend should be notified of the new renderer with the
setLegendRenderer() method of JCLegend.

Examples of Simple Custom Legends
The easiest way to perform simple legend customizations is to extend an existing
legend. This is clearly demonstrated in the Reversed Legend example in
JCLASS_HOME/examples/chart/legend/. This example overrides the
JCChartLegendManager class (the class that implements the JCLegendPopulator and
JCLegendRenderer interfaces in JClass Chart) to reverse the order of the legend
items. This class overrides the getLegendItems() method, first calling the
superclass’ method to get the list of legend items and then rearranging the order
before returning the newly reversed list of legend items.
Chapter 9 � Text and Style Elements 145

Figure 26 The Reversed Legend example, which extends JCChartLabelManager to reverse the
order of the legend items

Here’s the pertinent code:

public ReverseLegend() {

setLayout(new GridLayout(1,1));

// replace standard legend with custom legend that reverses
// the order of the legend items
JCChart c = new JCChart(JCChart.PLOT);

...
RevLegendManager legMan = new RevLegendManager(c);
c.getLegend().setLegendPopulator(legMan);
c.getLegend().setLegendRenderer(legMan);
c.getLegend().setVisible(true);

...
}

/** RevLegendManager overrides the standard legend representation
 * to reverse the drawing order of the legend items. It does this by
 * overriding getLegendItems() method of the JCChartLabelManager
 * class to reverse the order of the items in the legend
 * vector.
 */

class RevLegendManager extends JCChartLegendManager
{

RevLegendManager(JCChart chart)
{
super(chart);

}

146 Part I � Using JClass Chart

/** Override getLegendItems(). Reverse order of items in legend
 * vector.
 */
public List getLegendItems(FontMetrics fm)
{
// get the list of legend items from the superclass
List itemList = super.getLegendItems(fm);

// reverse the list
for (int i = 0; i < itemList.size(); i++) {

List viewItems = (List) itemList.get(i);

List reverseView = new Vector();
for (int j = viewItems.size() - 1; j >= 0; j--) {

JCLegendItem thisItem = (JCLegendItem) viewItems.get(j);

// reverse items in list, but keep the title at the top.
 if (isTitleItem(thisItem)) {

reverseView.add(0, thisItem);
} else {

reverseView.add(thisItem);
}

}
itemList.set(i, reverseView);

}
// now that we've set up the list correctly, let the superclass
// position it
return itemList;

}

}

The Separator Legend example in JCLASS_HOME/examples/chart/legend/ shows how
to place a separator between the data view title and the series beneath it. Similar to
the Reversed Legend example, the Separator Legend example overrides the
JCChartLegendManager class.

In the Separator Legend example, a new JCLegendItem is inserted into the list after
the data view title item as part of the layoutLegend() method. This new
JCLegendItem has only its textDimension filled in with the size of the separator, but
the actual contents field remains null – which is how one recognizes the separator
when it is time to draw it.

The drawType field of the JCLegendItem is set to JCLegend.CUSTOM_ALL to ensure
that the drawLegendItem() method will be called. Finally, the example returns the
item list with the newly added item and lets the superclass do the positioning and
sizing calculations.

The drawLegendItem() method is also overridden so that the separator can be
drawn. Before drawing, however, it is first determined whether the provided legend
item is, indeed, the separator created above.
Chapter 9 � Text and Style Elements 147

Figure 27 The Separator Legend example places a separator between the data view title and the series
beneath it, and extends JCChartLabelManager

Here’s the relevant code:
public SeparatorLegend() {

setLayout(new GridLayout(1,1));

// replace standard legend with custom legend that draws a
// separator between the title and the body

 JCChart c = new JCChart(JCChart.BAR);
...

SepLegendManager sepMan = new SepLegendManager(c);
c.getLegend().setLegendPopulator(sepMan);
c.getLegend().setLegendRenderer(sepMan);

c.getLegend().setVisible(true);
...
}

/** sepLegendManager overrides the standard legend populator and
 * renderer implementations to draw a separator between the legend
 * title and body. It does this by overriding the
 * JCChartLegendManager's getLegendItem() method (to insert an item
 * to take the place of a separator) and drawLegendItem() (to draw
 * the separator) methods.
 */
public class SepLegendManager extends JCChartLegendManager
{

public SepLegendManager(JCChart chart)
{
super(chart);

}
/** Override getLegendItems() to insert separtor item into
 * legend vector.
 */
public List getLegendItems(FontMetrics fm)
148 Part I � Using JClass Chart

{
// get the list of legend items from the superclass
List itemList = super.getLegendItems(fm);

// go through the list to find the spot for the separator
for (int i = 0; i < itemList.size(); i++) {

List viewItems = (List) itemList.get(i);

for (int j = 0; j < viewItems.size(); j++) {
JCLegendItem thisItem = (JCLegendItem) viewItems.get(j);

// Insert separator item after title item
// our separator is identified by having null contents
// but an existing text dimension. Make the separator as
// wide as the text portion of the title.

 if (isTitleItem(thisItem)) {
JCLegendItem newItem = new JCLegendItem();
boolean vertical = chart.getLegend().getOrientation() ==

JCLegend.VERTICAL;
if (vertical) {

newItem.textDim = new Dimension(thisItem.textDim.
width, 3);

} else {
newItem.textDim = new Dimension(3,

thisItem.textDim.height);
}
// make sure to set draw type as CUSTOM_ALL so that
// drawLegendItem() will be called.
newItem.drawType = JCLegend.CUSTOM_ALL;
viewItems.add(j+1, newItem);
break;

}
}

}

// now that the list is set up, let the superclass worry about
// positioning everything
return itemList;
}

/** Override drawLegendItem() to draw the separator item
 * when encountered.
 */
public void drawLegendItem(Graphics gc, Font useFont,

JCLegendItem thisItem)
{

// if our separator, draw it
if (thisItem.contents == null && thisItem.textDim != null) {

 if (gc.getColor() != getForeground())
gc.setColor(getForeground());

gc.fillRect(thisItem.pos.x + thisItem.textPos.x,
thisItem.pos.y + thisItem.textPos.y,
thisItem.textDim.width,
thisItem.textDim.height);

}
}

}

Chapter 9 � Text and Style Elements 149

Remember to use the setLegendPopulator() and setLegendRenderer() methods
of the JCLegend class to notify the legend of the new class.

Examples of Complex Legends
More complex customizations are also possible. Legends that require full-scale
changes to the rules of layout can override the JCLegend class and create their own
implementation. Have a look at JCLASS_HOME/examples/chart/legend/FlowLegend for
an example of a custom legend layout.

9.3 Chart Labels
Chart labels allow you to add more information to your chart. There are static labels
that display continuously and interactive labels that pop-up when a cursor moves
over a data item. Labels can be attached to different parts of a chart: absolute
coordinates, coordinates in the plotting area, or a specific data item. To see a wide
range of label uses, browse the demos in the JCLASS_HOME/demos/chart/labels/
directory.

9.3.1 Label Implementation

JClass Chart contains a list of labels, managed by the ChartLabelManager. This
property is initially null. By calling getChartLabelManager(), JClass Chart will
create a manager class with an empty list of labels. When you create a label, you
must add it to the manager with addChartlabel(). Labels are instances of the
JCChartLabel class.

9.3.2 Adding Labels to a Chart

Labels are added to a chart in two ways: with the AutoLabels property of
ChartDataView, or by attaching an instance of JCChartLabel to a chart element.

Individual labels are attached in three ways: to coordinates on the chart area
(ATTACH_COORD); coordinates on the plot area (ATTACH_DATACOORD); or to a data item
(ATTACH_DATAINDEX). Interactive labels must use the ATTACH_DATAINDEX method.

Each label on the chart below uses a different attachment method. The
“Point(100,50)” label, is attached to coordinates originating from the top left corner
of the chart area. “Value(2,220)” is attached to axes coordinates, and
“Data(Set0,Point2)” is attached to a specific data item.
150 Part I � Using JClass Chart

Attaching a Label to a Data Item
To attach a label to a point, bar or slice, set the AttachMethod property to
ATTACH_DATAINDEX. The labels move with the data element; the labels also move
when the chart is resized. Note that the points and series are zero-based. The
following example puts a label on a chart next to the fourth data point in the second
data series.

cl = new JCChartLabel(“Fourth data point”);
cl.setDataIndex(new JCDataIndex(view, series, 1, 3));
cl.setAttachMethod(JCChartLabel.ATTACH_DATAINDEX);
cl.setAnchor(JCChartLabel.AUTO);
chart.getChartLabelManager().addChartLabel(cl)

Attaching a Label to Chart Area Coordinates
To attach a label to a point on the chart area, set the AttachMethod property to
ATTACH_COORD. The coordinate origin for this method is the top left corner of the
chart area.

JCChartLabel cl = new JCChartLabel("Point(100.50)");
cl.setAttachMethod(JCChartLabel.ATTACH_COORD);
cl.setCoord(new Point(100, 50));
chart.getChartLabelManager().addChartLabel(cl)

Attaching a Label to Plot Area Coordinates
To attach a label to coordinates on the plot area, set the AttachMethod property to
ATTACH_DATACOORD. The plot area is defined by the chart’s x and y axes. The
following example places a label in the plot area at x-value 2.5, y-value 160.

JCChartLabel cl = new JCChartLabel("Attached to the data
coordinate", false);
cl.setDataCoord(new JCDataCoord(2.5, 160));
cl.setAnchor(JCChartLabel.NORTH);
cl.setAttachMethod(JCChartLabel.ATTACH_DATACOORD);
cl.setBorderType(Border.ETCHED_OUT);
cl.setBorderWidth(5);
chart.getChartLabelManager().addChartLabel(cl)

9.3.3 Interactive Labels
You can have labels pop-up as a cursor dwells over a point, bar or slice (a dwell
label). This allows you to create an interactive chart where information is hidden
until the user wants to see it. The AutoLabel property will set up a complete series of
dwell labels for your chart. In the example below, ‘225’ appears on top of the green
bar as the cursor passes over it, to indicate the value of the bar.
Chapter 9 � Text and Style Elements 151

Automatically Generated Labels
The AutoLabel property of ChartDataView will generate a complete series of dwell
labels if set to true. It attaches dwell labels to every data index. The following code
adds automatic dwell labels to the data:

chart.getDataView(0).setAutoLabel(true);

Adding Individual Dwell Labels
Attaching an individual dwell label follows the same procedure as attaching a static
label to a data item, except that the DwellLabel property is set to true:

cl.setDwellLabel(true);

A dwell label can only be used when the AttachMethod property is set to
ATTACH_DATAINDEX.

9.3.4 Adding and Formatting Label Text

JCChartLabel is just a holder for any JComponent. By default it is a JLabel instance,
and text can be set the same way you would set text on a JLabel. You can access the
component portion of the chart label with the getComponent() method.

JLabels support the use of HTML tags. The use of HTML tags overrides the default
Font and Color properties of the label. Please note that HTML labels may not work
with PDF, PS, or PCL encoding.

Adding Label Text
You can add text to a label by passing it to the constructor, or by using the Text
property. To add text to a label when it is constructed, include the text in the
constructor’s argument, as follows:

JCChartLabel cl = new JCChartLabel("I’m a Label", false);

To add text using the Text property, use the setText method, as follows:

((JLabel)cl.getComponent()).setText("I’m a Label");

Formatting Label Text
Font f = new Font("timesroman", Font.BOLD, 24);
cl.getComponent(),setFont(f)

JComponent properties such as fonts, borders, colors, etc, are set in the same manner.

9.3.5 Positioning Labels

The Anchor property determines the position of the label, relative to the point of
attachment. Valid positions include: NORTH, NORTHEAST, NORTHWEST, EAST, WEST,
SOUTHEAST, SOUTHWEST, SOUTH. The following example shows the syntax:

cl.setAnchor(JCChartLabel.EAST);
152 Part I � Using JClass Chart

9.3.6 Adding Connecting Lines
You can add lines that connect a label to its point of attachment. This can help the
end-user pinpoint what a label refers to on a chart.

To add a connecting line to a label, set the Connected property to true, as follows:

cl.setConnected(true);

9.4 Chart Styles

Chart styles define all of the visual attributes of how data appears in the chart,
including:

� Lines and points in plots and financial charts

� Color of each bar in bar charts

� Slice colors in pie charts

� Color of each filled area in area charts

Each series in a data view has its own JCChartStyle object; as new series are added,
new JCChartStyle objects are created automatically by the chart. JClass Chart
automatically defines a set of visually different styles for up to 13 series, so while you
can customize any chart style, you may not need to.

Every ChartStyle has a FillStyle, a LineStyle, and a SymbolStyle. FillStyles are
used for Area, Bar, Candle, Hi-Lo, Hi-Lo-Open-Close, Pie, and Stacking Bar charts.
LineStyles and SymbolStyles are used for plots.

Figure 28 Types of ChartStyles available

ChartStyle is an indexed property of ChartDataView that “owns” the JCChartStyle
objects for that data view. It can be manipulated like any other indexed property, for
example:

 arr.setChartStyle(0, new JCChartStyle());
Chapter 9 � Text and Style Elements 153

This adds the specified ChartStyle to the indexed property at the specified index. If
the ChartStyle is null, the JCChartStyle at the specified point is removed. The
following lists some of the other ways ChartStyle can be used:

� getChartStyle(index) — retrieves the chart style at the specified index

� setChartStyle(List) — replaces all existing chart styles

� List getChartStyle() — retrieves a copy of the array of chart styles

Normally, you will not need to add or remove JCChartStyle objects from the
collection yourself. If a JCChartStyle object already exists when its corresponding
series is created, the previously created JCChartStyle object is used to display the
data in this series.

Customizing Existing ChartStyles
Each JCChartStyle object contains three smaller objects that control different
aspects of the style: JCFillStyle, JCLineStyle, and JCSymbolStyle.

The most common chart style sub-properties are repeated in JCChartStyle. For
example, FillColor is a property of JCChartStyle that corresponds to the Color
property of JCFillStyle object. The following lists all of the repeated properties:

� LinePattern, LineWidth, and LineColor repeat JCLineStyle properties

� SymbolShape, SymbolColor, SymbolSize, and SymbolCustomShape repeat
JCSymbol properties

� FillColor, FillPattern, and FillImage repeat JCFillStyle properties.

FillStyle
JCFillStyle controls the fills used in bar, pie, area, and candle charts. Its properties
include Color and Pattern. Use Pattern to set the fill drawing pattern and Color to
set the fill color. The default pattern is solid fill.

 For JDK 1.2 and higher, available fill patterns include none, solid, 25%, 50%, 75%,
horizontal stripes, vertical stripes, 45 degree angle stripes, 135 degree angle stripes,
diagonal hatched pattern, cross hatched pattern, custom fill, custom paint, or, for bar
charts only, custom stack fill.

Custom fill and custom stack fill draw using the image set in the Image property.
Custom paint draws using the TexturePaint object, which is set in the CustomPaint
property.

Note that filled areas are not supported for Polar charts.

LineStyle
JCLineStyle controls line drawing, used in line and hi-lo charts. Its properties are
Color, Pattern and Width. Use Pattern to set the line drawing pattern, Color to set
the line color, and Width to set the line width.

Custom line patterns can be set with a setPattern() method that specifies the line
pattern arrays to use.
154 Part I � Using JClass Chart

SymbolStyle
JCSymbolStyle controls the symbol used to represent points in a data series, used in
plot or scatter plot charts. Its properties are Shape, Color and Size. Use Shape to set
the symbol type, Size to set its size, and Color to set the symbol color.

Valid symbols are shown below:

Figure 29 Symbols available in JCSymbolStyle

You can also provide a custom shape by implementing an abstract class JCShape and
assigning it to the CustomShape property.

Customizing All ChartStyles
By looping through the JCChartStyle indexed property, you can quickly change the
appearance of all of the bars, lines, or points in a chart. For example, the following
code lightens all of the bars in a chart whenever the mouse is clicked:

for (Iterator i = c.getDataView(1).getChartStyle().listIterator();
i.hasNext();)
{

JCChartStyle cs = (JCChartStyle) i.next();
JCFillStyle fs = cs.getFillStyle();
fs.setColor(fs.getColor().brighten);

}

9.5 Borders

One way to highlight important information or improve the chart’s appearance is to
use a border. You can customize the border of the following chart objects:

� Header and Footer titles

� Legend

� ChartArea
Chapter 9 � Text and Style Elements 155

� each ChartLabel added to the chart

� the entire chart

Border properties are set using the standard JComponent border facilities,
getBorder() and setBorder().

9.6 Fonts

A chart can have more impact when you customize the fonts used for different chart
elements. You may also want to change the font size to make an element better fit the
overall size of the chart. Any font available when the chart is running can be used.
You can set the font for the following chart elements:

� Header and Footer titles

� Legend

� Axis annotation and title

� each ChartLabel added to the chart

Changing a Font
Font properties are set using the standard JComponent font facilities, getFont() and
setFont().

Use the font properties to set the font, style, and size attributes.

9.7 Colors

Color can powerfully enhance a chart’s visual impact. You can customize chart
colors using Java color names or RGB values. Using an interactive tool like the Chart
Customizer can make selecting custom colors quick and easy. Each of the following
visual elements in the chart has a background and foreground color that you can
customize:

� the entire chart

� Header and Footer titles

� Legend

� Chart Area

� Plot Area (foreground colors JCChartArea’s AxisBoundingBox)

� each Chart Label added to the chart

Other chart objects have color properties too, including ChartDataView (bar/pie
outline color) and ChartStyles.

Color Defaults
All chart subcomponents are transparent by default with no background color. If
made opaque, the legend, chart area and plot will inherit background color from the
parent chart. The same objects will always inherit the foreground color from the
chart.
156 Part I � Using JClass Chart

Headers and footers are independant objects and behave acccording to the rules of
whatever object they are.

However, once the application sets the colors of an element, they do not change
when other elements’ colors change.

Specifying Foreground and Background Colors
Each chart element listed above has a Background and Foreground property that
specifies the current color of the element. The easiest way to specify a color is to use
the built-in colornames defined in java.awt.Color. The following table summarizes
these colors:

Alternately, you can specify a color by its RGB components, useful for matching
another RGB color. RGB color specifications are composed of a value from 0 – 255
for each of the red, green and blue components of a color. For example, the RGB
specification of Cyan is “0-255-255” (combining the maximum value for both green
and blue with no red).

The following example sets the header background using a built-in color, and the
footer background to an RGB color (a dark shade of Turquoise):

 c.getHeader().setBackground(Color.cyan);

 mycolor = new Color(95,158,160);
 c.getFooter().setBackground(mycolor);

Take care not to choose a background color that is also used to display data in the
chart. The default ChartStyles use all of the built-in colors in the following order:
Red, Orange, Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan,
Black, Pink, and White. Note that JClass Chart will skip colors that match
background colors. For example, if the chart area background is Red, then the line,
fill, and symbol colors will start at Orange.

For all JClass Chart charts, the foreground and background colors of the plot area
are adjustable.

Transparency
If the JClass Chart component is meant to have a transparent background, set the
Opaque property to False; then generated GIFs and PNGs will also contain a
transparent background.

Built-in Colors in java.awt.Color

black blue cyan

darkGray gray green

lightGray magenta orange

pink red white

yellow
Chapter 9 � Text and Style Elements 157

9.8 Positioning Chart Elements

Each of the main chart elements (Header, Footer, Legend, and ChartArea) has
properties that control its position and size. While the chart can automatically
control these properties, you can also customize the following:

� positioning of any element

� size of any element

When the chart controls positioning, it first allows space for the Header, Footer, and
Legend, if they exist (size is determined by contents, border, and font). The
ChartArea is sized and positioned to fit into the largest remaining rectangular area.
Positioning adjusts when other chart properties change.

ChartLabels do not figure into the overall Chart layout. Instead, they are positioned
above all other Chart elements.

Changing the Location and Size
To specify the absolute location and size of a chart element, call setLayoutHints()
in JClass Chart with the object you wish to move and a rectangle containing its
desired x and y location, width, and height. If you desire any of those values to be
calculated rather than set, make them equal to Integer.MAX_VALUE.

For example,

chart.setLayoutHints(legend, newRectange(0,150,200,200))

will set the legend to be 200 x 200 and place it at (0,150), while

chart.setLayoutHints(legend, Rectange(0,150,
Integer.MAX_VALUE,Integer.MAX_VALUE, Integer.MAX_VALUE))

will leave the legend’s size alone but still move it to (0,150).
158 Part I � Using JClass Chart

9.9 3D Effect

Data in bar, stacking bar and pie charts can be displayed with a three-dimensional
appearance using several JCChartArea properties:

� Depth — Specifies the apparent depth as a percentage of the chart’s width. No 3D
effect appears unless this property is set greater than zero.

� Elevation — Specifies the eye’s position above the horizontal axis, in degrees.

� Rotation — Specifies the number of degrees the eye is positioned to the right of
the vertical axis. This property has no effect on pie charts.

You can set the visual depth and the “elevation angle” of the 3D effect. You can also
set the “rotation angle” on bar and stacking bar charts. Depth, Rotation and
Elevation are all properties of the ChartArea.

Figure 30 Four JClass Charts illustrating 3D effects
Chapter 9 � Text and Style Elements 159

160 Part I � Using JClass Chart

10
Advanced Chart Programming

Outputting JClass Charts � Batching Chart Updates

Coordinate Conversion Methods � FastAction � FastUpdate
Programming End-User Interaction � Image-Filled Bar Charts

Pick � Using Pick and Unpick � Unpick

Controlling the chart in an application program is generally straightforward once
you are familiar with the programming basics and the object hierarchy. For most
JClass Chart objects, all the information needed to program them can be found in
the API. In addition, extensive information on how they can be used can be found in
the numerous example and demonstration programs provided with JClass Chart.

This chapter covers more advanced programming concepts for JClass Chart and also
looks at more complex chart programming tasks.

10.1 Outputting JClass Charts

Many applications require that the user has a way to get an image or a hard copy of
a chart. JClass Chart allows you to output your chart as a GIF, PNG, or JPEG image,
to either a file or an output stream.

(If you have JClass PageLayout installed, you can also encode your charts as an EPS,
PS, PCL, or PDF file [in addition to GIF, PNG, or JPEG]. For more information,
please see the JClass PageLayout Programmer’s Guide. Refer to Sitraka’s web site for
information on evaluating or purchasing JClass PageLayout.)

Please note that in order to enable GIF encoding, you must obtain a license from
Unisys and send a copy of this license to Sitraka. Sitraka will send the enabling
software for GIF encoding upon receipt of a valid proof of license. There are also
public sources of Java image to GIF converters.
161

../api/index.html

../pagelayout/index.html
http://www.sitraka.com

Located in com.klg.jclass.util.swing.encode, the JCEncodeComponent class is
used to encode components into different image file formats. When you include this
class in your program, you can call one of two methods that allow you to save the
chart image as a GIF, PNG, or JPEG file, sending it to either a file or an output
stream.

The parameters of the two methods are the same, except for output.

10.1.1 Encode method

The method to output to a file is:
public static void encode(JCEncodeComponent.Encoding encoding,
Component component, File file)

The method to output to an output stream is the same, except that the last parameter
is OutputStream output, that is ...Component component, OutputStream output)

The component parameter refers to the component to encode, that is, the chart; the
encoding parameter refers to the type of encoding to use (a GIF, PNG, or JPEG; if
you have JClass PageLayout installed, you can also encode your chart as an EPS, PS,
PCL, or PDF file); and the output parameter refers either to the file to which to write
the encoding or to the stream to which to write the encoding.

10.1.2 Encode example

To see this encode method in action, please look at the Encode example, found in
the “Example & Demo Gallery” that was installed automatically with JClass Chart.
This example appears in the Advanced folder.

In this example, you can alter the encoding type by selecting a different encoding
type from the dropdown menu. Another option provided is your choice of file name.
Also, you can right-click the example to bring up the Property Editor and further
manipulate the properties of the chart.
162 Part I � Using JClass Chart

../api/com/klg/jclass/util/swing/encode/Encoder.html

10.1.3 Code example

The following code snippet was used to create the example above.

public void actionPerformed(ActionEvent evt) {
int typeIndex = encTypesCB.getSelectedIndex();
String fileName = encFileTF.getText();
if (evt.getSource() == encButton) {
// if encode button pressed, get the encoding type and file name
// and use them to encoding the chart

if (typeIndex >= 0 && !(fileName.equals(""))) {
// Call chart's encoding method, but make sure to catch
// possible exception
try {

JCEncodeComponent.encode
(JCEncodeComponent.ENCODINGS[typeIndex], chart, new
File(fileName));

} catch (EncoderException ee) {
ee.printStackTrace();

}
catch (IOException io) {

io.printStackTrace();
}

}
}

10.2 Batching Chart Updates

Normally, the chart is repainted immediately after a property is set. To make several
changes to a chart before causing a repaint, set the Batched property of the JCChart
object to true. Property changes do not cause a repaint until Batched is reset to
false.

The Batched property is also defined for the ChartDataView object. This Batched
property is independent of JCChart.Batched. It is used to control the update
requests sent from the DataSource to the chart.

Note: It is highly recommended that you batch around the creation or updating of
multiple chart labels.

10.3 Coordinate Conversion Methods

The ChartDataView object provides methods that enable you to do the following:

� Convert from data coordinates (x and y data values) to pixel coordinates (where
these data coordinates appear on screen) and vice versa.

� Determine the pixel coordinates of a given data point in a series, or the closest
point to a given set of pixel coordinates.
Chapter 10 � Advanced Chart Programming 163

The following table outlines which method or functional equivalent to use for each
action.

10.3.1 CoordToDataCoord and DataIndexToCoord

To convert from data coordinates to pixel coordinates, call the dataCoordToCoord()
method. For example, the following code obtains the pixel coordinates
corresponding to the data coordinates (5.1, 10.2):

 Point p=c.getDataView(0).dataCoordToCoord(5.1,10.2);

This works in the same way as unmap. Note that the pixel coordinate positioning is
relative to the upper left corner of the JCChart component display.

To convert from pixel coordinates to data coordinates, call coordToDataCoord(). For
example, the following converts the pixel coordinates (225, 92) to their equivalent
data coordinates:

 JCDataCoord cd=c.getDataView(0).coordToDataCoord(225,92);

This works in the same manner as map. So, coordToDataCoord() returns a
JCDataCoord object containing the x and y values in the data space.

To determine the pixel coordinates of a given data point, call dataIndexToCoord().
For example, the following code obtains the pixel coordinates of the third point in
the first data series:

 JCDataIndex di=new
JCDataIndex(3,c.getDataView(0).getSeries(0));
 Point cdc=c.getDataView(0).dataIndexToCoord(di);

To determine the closest data point to a set of pixel coordinates, call
coordToDataIndex():

 JCDataIndex di=c.getDataView(0).coordToDataIndex(225,92,
 ChartDataView.PICK_FOCUSXY);

Essentially, these last two examples demonstrate that dataIndexToCoord() works in
much the same way as pick and unpick. The third argument passed to
coordToDataIndex() specifies how the nearest series and point value are
determined. This argument can be one of ChartDataView.PICK_FOCUSXY,
ChartDataView.PICK_FOCUSX or ChartDataView.PICK_FOCUSY. For more information

Method Functional equivalent Action

dataCoordToCoord() unmap Converts from data coordinates to pixel
coordinates

coordToDataCoord() map Converts from pixel coordinates to data
coordinates

dataIndexToCoord() unpick Determines the pixel coordinates of a
given data point in a series

coordToDataIndex() pick Determines the closest point in pixels to a
given data point in a series
164 Part I � Using JClass Chart

on the pick and unpick methods, please see the Using Pick and Unpick on page 170
section later in this chapter.

JCDataIndex contains the series and point value corresponding to the closest data
point, and also returns the distance in pixels between the pixel coordinates and the
point. coordToDataIndex() returns a JCDataIndex instance.

10.3.2 Map and Unmap

The map and unmap are functionally equivalent to the coordToDataCoord() and
dataIndexToCoord() methods. They are provided as convenience methods, and are
more in keeping with typical Java terminology than coordToDataCoord() and
dataIndexToCoord().

For Polar charts, the x and y values are interpreted as (theta, r) coordinates. The x
units used will depend on the current value of angle unit. The case for Radar and
Area Radar charts is similar, except that x values will be ignored.

10.4 FastAction

The FastAction property determines whether chart actions will use an optimized
mode in which it does not bother to update display axis annotations or grid lines
during a chart action. Default value is false.

Using FastAction can greatly improve the performance of a chart display, because
relatively more time is needed to draw such things as axis annotations or grid lines
than for simply updating the points on a chart. It is designed for use in dynamic chart
displays, such as charts that enable the user to perform translation or rotation actions.

The following line of code shows how FastAction can be used in a program:

 c.getChartArea().setFastAction(true);

10.5 FastUpdate

The FastUpdate property optimizes chart drawing – if possible, only new data that
has been added to the datasource is drawn when the chart updates, with little
recalcing and redrawing of existing points. (Please see Making Your Own Chart Data
Source for a guide on how to build an updating chart data source.) However, if the
new data goes outside of the current axis boundaries, then a full redraw is done.

Using FastUpdate can improve the performance of a chart display, especially with
dynamic chart displays.

The following line of code shows how FastUpdate can be used in a program:

 c.getDataView(0).setFastUpdate(true);
Chapter 10 � Advanced Chart Programming 165

A chart using the fast update feature will not draw correctly when the chart object is
placed within an JInternalFrame object or when items from a JPopupMenu overlay
the chart.

Please see the FastUpdate demo, found in JCLASS_HOME\demos\chart\fastupd\, for
a demonstration of this feature.

Note: This feature is not supported in Area Radar or Radar charts. For Polar charts,
there is no need to check the axis bounds in the x-direction. The routines for
checking axis bounds can still be used for the y-direction.

10.6 Programming End-User Interaction

An end-user can interact with a chart more directly than using the Customizer. Using
the mouse and keyboard, a user can examine data more closely or visually isolate
part of the chart. JClass Chart provides the following interactions:

� moving the chart

� zooming into or out of the chart

� rotation (only for bar or pie charts displaying a 3D effect)

� adding depth cues to the chart

� interactively change data points (using the pick feature)

It is also possible in most cases for the user to reset the chart to its original display
parameters. The interactions described here affect the chart displayed inside the
ChartArea; other chart elements, such as the header, are not affected.

Note: The keyboard/mouse combinations that perform the different interactions can
be changed or removed by a programmer. The interactions described here may not
be enabled for your chart.

A chart action is a user event that causes some interactive action to take place in the
control. In JClass Chart, actions like zoom, translate and rotate can be mapped to a
mouse button and a modifier. For example, it is possible to bind the translate event
to the combination of mouse button 2 and the Control key. Whenever the user hits
Control and mouse button 2 and drags the mouse, the chart will move.

10.6.1 Event Triggers

An event trigger is a mapping of a mouse operation and/or a key press to a chart
action. In the example above, the trigger for translate is a combination of mouse
button 2 and the Control key.

An event trigger has two parts:

� the modifier, which specifies the combination of meta keys and mouse buttons
that will trigger the action; and,

� the action, which specifies the combination of chart action that will occur.
166 Part I � Using JClass Chart

Valid actions include EventTrigger.CUSTOMIZE, EventTrigger.DEPTH,
EventTrigger.EDIT, EventTrigger.PICK, EventTrigger.ROTATE,
EventTrigger.TRANSLATE, and EventTrigger.ZOOM.

10.6.2 Valid Modifiers

The value of a modifier is specified using java.AWT.event modifiers, as shown in the
following list:

� InputEvent.SHIFT_MASK

� InputEvent.CTRL_MASK

� InputEvent.ALT_MASK

� InputEvent.META_MASK

You can also specify the mouse button using one of the following modifiers:

� InputEvent.BUTTON1_MASK

� InputEvent.BUTTON2_MASK

� InputEvent.BUTTON3_MASK

10.6.3 Programming Event Triggers

To program an event trigger, use the setTrigger method to add the new action
mapping to the collection.

For example, the following tells JClass Chart to add a zoom operation as its first
trigger (first trigger denoted by 0) when Shift and mouse button are pressed:

 c.setTrigger(0,newEventTrigger(Event.SHIFT_MASK,
 EventTrigger.ZOOM);

10.6.4 Removing Action Mappings

To remove an existing action mapping, set the trigger to null, as in the following
example:

 c.setTrigger(0,null);

10.6.5 Calling an Action Directly

In JClass Chart, it is possible to force some actions by calling a method of JCChart.
The following is a list of the methods that can be called upon to force a particular
action:

� Translation – translateStart(), translate(), translateEnd()

� Rotation – rotateStart(), rotate(), rotateEnd()

� Zoom – zoomStart(), zoom(), zoomEnd()

� Scale – scale()

� Reset – reset()
Chapter 10 � Advanced Chart Programming 167

10.6.6 Specifying Action Axes

Actions like translation occur with respect to one or more axes. In JClass Chart, the
axes can be set using the HorizActionAxis and VertActionAxis properties of
JCChartArea, as the following code fragment illustrates:

 ChartDataView arr = c.getDataView(0);
 c.getChartArea().setHorizActionAxis(arr.getXAxis());
 c.getChartArea().setVertActionAxis(arr.getYAxis());

Note that it is possible to have a null value for an action axis. This means that chart
actions like translation do not have any effect in that direction. By default, the
HorizActionAxis is set to the default X-axis, and the VertActionAxis is set to the
default Y-axis.

10.7 Image-Filled Bar Charts

It is possible to use image files as chart elements within a bar chart. This is
accomplished by using the Image in JCFillStyle. Image sets the image used to paint
the fill region of bar charts. It takes img as a parameter, which is an AWT Image class
representing the image to be used to paint image fills. If set to null, no image fill is
done.

The following code fragment shows how Image can be incorporated into a program:

String imageStrings[] = {"cd.gif", "tape.gif"};
 List seriesList = arr.getSeries();
 Iterator iter = seriesList.iterator();
 for (int i = 0; iter.hasNext(); i++) {
 ChartDataViewSeries thisSeries = (ChartDataViewSeries)
iter.next();
 if (i < seriesLabels.length) {
 if (imageStrings[i] != null) {
 Class cl = getClass();
 URL url =
cl.getResource("/examples/chart/intro/"+imageStrings[i]);
 if (url != null) {
 ImageIcon icon = new ImageIcon(url);
 thisSeries.getStyle().getFillStyle().
 setImage(icon.getImage());
 thisSeries.getStyle().getFillStyle().
 setPattern(JCFillStyle.CUSTOM_STACK);
 }
 }
 }
 }

The effects can be seen in the ImageBar demonstration program (in the
JCLASS_HOME/examples/chart/intro/ImageBar.java directory), which comes with
JClass Chart.
168 Part I � Using JClass Chart

Figure 31 The ImageBar demonstration program

The image is clipped at the point of the highest value indicated for the bar chart.

Image only tiles the image along a single axis. For example, if the bars were widened
in the above illustration, it would still tile along the vertical Y-axis only, and would
not fill in the image across the horizontal X-axis. This same principle applies (though
along different axes) when the bar chart is rotated 90 degrees.

Note: Image can only be used with the image formats that can be used in Java.

10.8 Pick
The pick() method is used to translate a pixel coordinate on a chart to the data
point that is closest to it. The method takes a Point object containing a pixel
coordinate and an optional ChartDataView object to check against, and returns the
resulting data point encapsulated in a JCDataIndex object.

For pick() to work correctly, the JCChart instance must first be laid out. This is
automatically done whenever a chart is drawn, such as when the snapshot() method
is called. Alternately, layout can be accomplished manually by called the
doLayout() method of JCChart.

Pick Methods for Polar and Radar Charts
The pick() method for Polar and Radar charts is implemented in two stages. The
data point closest to the pick point is identified in a primary search, thus obeying the
specified pick focus rule. In some cases (for example, Radar charts with more than
one series), there may be two or more data points that have the same x or y value.
The primary search result may be ambiguous if the pick focus rule is PICK_FOCUS_X
or PICK_FOCUS_Y. To determine which of those points is the desired one, a secondary
search is carried out using the PICK_FOCUS_XY rule.
Chapter 10 � Advanced Chart Programming 169

Pick Methods for Area Radar Charts
The pick behavior for Area Radar charts differs from that of Polar or Radar charts. If
the user clicks on a point within a filled polygon, the search for the closest point
(again, obeying the pick focus rule) is limited to the data series represented by that
polygon. Pick points within a polygon have the JCDataIndex.distance variable set
to 0. If the pick point is not within a filled polygon (that is, the user clicked on a point
outside of the largest polygon), then the smallest distance from the pick point to the
polygon is taken. As with the Polar and Radar chart types, primary and secondary
searches are conducted to resolve ambiguities that may arise for PICK_FOCUS_X or
PICK_FOCUS_Y.

10.9 Using Pick and Unpick
The pick method is used to retrieve an x,y coordinate in a Chart from user input and
then translate that into selecting the data point nearest to it. For example, if a user
clicks within a single bar within a bar chart, pick takes the coordinates of the mouse-
click and selects that bar for any action within the program. Similarly, if a user clicks
in an area immediately above a bar chart, pick is used to select the bar that is closest
to the mouse click.

To use the pick listener, you must first set up a PICK event trigger on the chart. See
Programming Event Triggers on page 167 for more details.

Consider the following code listing (the code that comprises the DrillDown
demonstration program that comes with JClass Chart, in
JCLASS_HOME/demos/chart/drilldown/) that demonstrates how pick can be used to
“drill down” to reveal more information:

package demos.chart.drilldown;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Event;
import java.awt.GridLayout;
import com.klg.jclass.chart.ChartDataView;
import com.klg.jclass.chart.ChartDataViewSeries;
import com.klg.jclass.chart.EventTrigger;
import com.klg.jclass.chart.JCAxis;
import com.klg.jclass.chart.JCPickListener;
import com.klg.jclass.chart.JCPickEvent;
import com.klg.jclass.chart.JCChartStyle;
import com.klg.jclass.chart.JCChart;
import com.klg.jclass.chart.ChartText;
import com.klg.jclass.chart.JCDataIndex;
import com.klg.jclass.chart.JCLegend;
import com.klg.jclass.chart.JCChartArea;
import com.klg.jclass.util.swing.JCExitFrame;
import javax.swing.JLabel;
import javax.swing.JEditorPane;
import javax.swing.BorderFactory;
import java.util.Iterator;
import java.util.List;
170 Part I � Using JClass Chart

/*
 *This applet demonstrates using pick to drill down to more
refined data
 *
 */

public class DrillDown extends javax.swing.JPanel
 implements JCPickListener {

Data d = null;

JCChart c = null;

public DrillDown() {
 setLayout(new BorderLayout(10,10));

 d = new Data();

 Color Turquoise = new Color(64,224,208);
 Color DarkTurquoise = new Color(0x00,0xce,0xd1);

 c = new JCChart();
 c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
 c.setBackground(DarkTurquoise);

 c.getChartArea().getPlotArea().setBackground(Turquoise);
c.getChartArea().setBorder(BorderFactory.createEtchedBorder());

 c.getHeader().setBackground(Turquoise);
 ((JLabel)c.getHeader()).setText("<html><center>Drill Down

Demo
Independent Comic Book Sales 1996</center>");
((JLabel)c.getHeader()).setBorder(
BorderFactory.createRaisedBevelBorder());
 c.getHeader().setVisible(true);

 c.getLegend().setVisible(true);
 c.getLegend().setBackground(Turquoise);

c.getLegend().setBorder(BorderFactory.createLoweredBevelBorder());

 c.setBatched(false);
 c.getDataView(0).setDataSource(d);
 c.getDataView(0).setChartType(JCChart.BAR);
 c.getDataView(0).setHoleValue(-1000);

 c.getFooter().setVisible(true);
((JLabel)c.getFooter()).setText("<html>

<CENTER><i>Drill Down -> Mouse Down on Bar or Legend
Drill Up ->
Mouse Down on Other Area of Graph</i><CENTER>");

 c.getChartArea().setDepth(10);
 c.getChartArea().setElevation(20);
 c.getChartArea().setRotation(20);

 // Set colors for each data series
setSeriesColor();

 // Set up pick and rotate trigger
 c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
 c.setTrigger(1, new EventTrigger(Event.SHIFT_MASK,

EventTrigger.ROTATE));
 c.setTrigger(2, new EventTrigger(Event.META_MASK,

EventTrigger.CUSTOMIZE));
 c.setAllowUserChanges(true);
Chapter 10 � Advanced Chart Programming 171

 // Add listener for pick events
 c.addPickListener(this);

 add("Center",c);
}

void setSeriesColor()
{
 // Set colors for each data series
 Color colors[] = {Color.red, Color.blue, Color.white,
Color.magenta,
 Color.green, Color.cyan, Color.orange,
 Color.yellow};
 ChartDataView arr = c.getDataView(0);
 List seriesList = arr.getSeries();
Iterator iter = seriesList.iterator();
 for (int i = 0; iter.hasNext(); i++) {

((ChartDataViewSeries)iter.next()).getStyle().setFillColor(colors
[i]);
 }
}

/** Pick event listener. Upon receipt of a pick event, it either
drills
 * up or down to more general or refined data.
 */
public void pick(JCPickEvent e)
{
boolean doLevel = false;
boolean doUpLevel = true;
 JCDataIndex di = e.getPickResult();
 int srs = 0;

 // If clicked on bar or legend item, drill down. If clicked on
 // any other area of chart, drill up.
 if (di != null) {
 Object obj = di.getObject();
 ChartDataView vw = di.getDataView();
srs = di.getSeriesIndex();

 int pt = di.getPoint();
 int dist = di.getDistance();

 if (vw != null && srs != -1) {
 if (srs >= 0) {
 if ((obj instanceof JCLegend) ||
 (obj instanceof JCChartArea && dist == 0)) {

doLevel = true;
doUpLevel = false;

}
 else {

doLevel = true;
}

 }
 } else {

doLevel = true;
 }
 } else {
doLevel = true;

 }
172 Part I � Using JClass Chart

if (doLevel) {
c.setBatched(true);
if (doUpLevel)

 d.upLevel();
else

 d.downLevel(srs);
setSeriesColor();
c.setBatched(false);

}
}

public static void main(String args[]) {
 JCExitFrame f = new JCExitFrame("Basic Drilldown example");
 DrillDown tc = new DrillDown();
 f.getContentPane().add(tc);
 f.setSize(600,400);
 f.setVisible(true);
}

}

When compiled and run, the DrillDown.class program displays the following:

Figure 32 The DrillDown demonstration program displayed

When a bar or legend within this chart is clicked by the user, the program “drills
down” to reveal more refined data comprising that bar. If an area outside of the bars
is clicked upon, then the program “drills up” to reveal more general data.

pick is key to this program, determining the way the program interacts with the user.
pick requires an event trigger and listener to work, as the following code fragment
shows:

 c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
 c.addPickListener(this);
public void pick(JCPickEvent e)
{
 JCDataIndex di = e.getPickResult();
}

Chapter 10 � Advanced Chart Programming 173

When a user clicks in the DrillDown demonstration program, the event is triggered,
and the x,y coordinates are passed along to the pick event listener, which in turn
takes the information and performs the indicated action. The pick() method returns
a JCDataIndex which encapsulates the point index and data series of the selected
point.

It is also possible to send a pick event to objects manually. When the
sendPickEvent() method is called, it sends a pick event to all objects listening for it.

10.9.1 Pick Focus

pick normally takes an x,y coordinate value, but it can take an x or y value only,
which is useful for specific chart types. This can be specified using the PickFocus
property of ChartDataView which specifies how distance is determined for pick
operations. When set to PICK_FOCUS_XY (default), a pick operation will use the actual
distance between the point and the drawn data. When set to values of PICK_FOCUS_X
or PICK_FOCUS_Y, only the distance along the X- or Y-axis is used.

This is a particularly useful method within programs that display typical bar charts.
In most cases it is more desirable to know which bar the user is over than which bar
the user is closest to when the user clicks their mouse over a chart.

For example, a user may click over a relatively small bar in a bar chart, with the
intention of raision the value of the bar displayed. If an adjacent bar in the chart is
closer to the area of the mouse click along the Y-axis than the X-axis, then the
adjacent bar could be selected instead of the intended target bar.

To overcome this, use PickFocus and select the axis whose values are to be reported
back to the program. For example, the following line of code sets PickFocus to only
report the x coordinate of a pick event:

arr.setPickFocus(ChartDataVies.PICK_FOCUS_X);

10.10 Unpick

The unpick() method essentially functions in the opposite manner of pick: given a
data series and a data point within that series, unpick returns the pixel co-ordinates
of that point relative to the chart area. It takes two sets of parameters: pt for the point
index, and series for the data series. For bar charts it returns the top-middle location
for a given bar, and the middle of an arc for a pie chart. unpick can be used to
display information at a given point in a chart, and can be used for attaching labels to
chart regions.

For unpick() to work correctly, the JCChart instance must first be laid out. This is
automatically done whenever a chart is drawn, such as when the snapshot() method
is called. Alternately, layout can be accomplished manually by called the
doLayout() method of JCChart.
174 Part I � Using JClass Chart

Part

Reference
Appendices

Appendix A
JClass Chart Property Listing

ChartDataView � ChartDataViewSeries

ChartText � JCAreaChartFormat � JCAxis
JCAxisFormula � JCAxisTitle � JCBarChartFormat

JCCandleChartFormat � JCChart � JCChartArea

JCChartLabel � JCChartLabelManager � JCChartStyle
JCFillStyle � JCGridLegend � JCHLOCChartFormat

JCLegend � JCLineStyle � JCMultiColLegend

JCPieChartFormat � JCPolarRadarChartFormat � JCSymbolStyle
JCValueLabel � PlotArea � SimpleChart

This appendix summarizes the JClass Chart properties for all commonly-used classes,
in alphabetical order.

A.1 ChartDataView

Name Description

AutoLabel The AutoLabel property determines if the chart automatically
generates labels for each point in each series. The default is false.
The labels are stored in the AutoLabelList property. They are
created using the Label property of each series.

Batched The Batched property controls whether the ChartDataView is
notified immediately of data source changes, or if the changes are
accumulated and sent at a later date.

BufferPlotData The BufferPlotData property controls whether plot data is to be
buffered to speed up the drawing process. This property is applicable
for Plot, Scatter, Area, Hilo, HLOC, and Candle chart types only.
Normally it is true. The property is ignored if the FastUpdate
property is true. Plot data will be buffered for FastUpdate.
177

ChartFormat The ChartFormat property represents an instance of
JCAreaChartFormat, JCBarChartFormat,
JCCandleChartFormat, JCHiloChartFormat, or
JCHLOCChartFormat, JCPieChartFormat,depending on the
current chart type.

Changed The Changed property manages whether the data view requires
recalculation. If set to true, a recalculation may be triggered. Default
value is true.

ChartStyle The ChartStyle property contains all the ChartStyles for the data
series in this data view. Default value is generated.

ChartType The ChartType property of the ChartData object specifies the
type of chart used to plot the data. Valid values are JCChart.AREA,
JCChart.AREA_RADAR, JCChart.BAR, JCChart.CANDLE,
JCChart.HILO, JCChart.HILO_OPEN_CLOSE, JCChart.PIE,
JCChart.PLOT (default), JCChart.POLAR,
JCChart.RADAR, JCChart.SCATTER_PLOT,
JCChart.STACKING_AREA, and JCChart.STACKING_BAR.

ColorHandler The ColorHandler property specifies a class used to override the
default color determination. The ColorHandler property must
implement JCDrawableColorHandler.

DataSource The DataSource property, if non-null, is used as a source for data
in the ChartDataView. The object must implement
ChartDataModel.

DrawFrontPlane The DrawFrontPlane property determines whether a data view that
has both axes on the front plane of a 3d chart will draw on the front or
back plane of that chart. If true, it will draw on the front plane; if
false it will draw on the back plane. If either axis associated with the
data view is on the back plane, this property will be ignored and the
data view will automatically be drawn on the back plane. This property
is also ignored for 3d chart types such as bar and stacking bars that
automatically appear on the front plane.

DrawingOrder The DrawingOrder property determines the drawing order of items.
When the DrawingOrder property is changed, the order properties
of all ChartDataView instances managed by a single JCChart
object are normalized.

FastUpdate The FastUpdate property controls whether column appends to the
data are performed quickly, only recalculating and redrawing the
newly-appended data.

HoleValue The HoleValue property is a floating point number used to
represent a hole in the data. Internally, ChartDataView places this
value in the x and y arrays to represent a missing data value. Note
that if the HoleValue is changed, values in the x and y data
previously set with HoleValues will not change their values but will
now draw.

Inverted If the Inverted property is set to true, the X-axis becomes
vertical, and the Y-axis becomes horizontal. Default value is false.

Name The Name property is used as an index for referencing particular
ChartDataView objects.

Name Description
178 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.2 ChartDataViewSeries

NumPointLabels The NumPointLabels property determines the number of labels in
the PointLabels property. The PointLabels property is an
indexed property consisting of a series of strings representing the
desired label for a particular data point.

NumSeries The NumSeries property determines how many data series there are
in a ChartDataView.

OutlineColor The OutlineColor property determines the color with which to
draw the outline around a filled chart item (e.g. bar, pie).

PickFocus The PickFocus property specifies how distance is determined for
pick operations. When set to PICK_FOCUS_XY, a pick operation will
use the actual distance between the point and the drawn data. When
set to values of PICK_FOCUS_X or PICK_FOCUS_Y, the distance
only along the X or Y axis is used.

PointLabel Sets a particular PointLabel from the PointLabels property (see
below).

PointLabels The PointLabels property is an indexed property comprising a
series of strings representing the desired label for a particular data point.

Series The Series property is an indexed property that contains all data
series for a particular ChartDataView. The order of
ChartDataViewSeries objects in the series array corresponds to
the drawing order.

Visible The Visible property determines whether the dataview is showing
or not. Default value is true.

VisibleInLegend The VisibleInLegend property determines whether or not the
view name and its series will appear in the chart legend.

XAxis The XAxis property determines the X-axis against which the data in
ChartDataView is plotted.

YAxis The YAxis property determines the Y-axis against which the data in
ChartDataView is plotted.

Name Description

DrawingOrder The DrawingOrder property determines the order of display of
data series. When the DrawingOrder property is changed,
ChartDataView will normalize the order properties of all the
ChartDataViewSeries objects that it manages.

FirstPoint The FirstPoint property controls the index of the first point
displayed in the ChartDataViewSeries.

Included The Included property determines whether a data series is
included in chart calculations (like axis bounds).

Name Description
Appendix A � JClass Chart Property Listing 179

A.3 ChartText

Label The Label property controls the text that appears next to the data
series inside the legend.

LastPoint The LastPoint property controls the index of the first point
displayed in the ChartDataViewSeries.

LastPointIsDefault The LastPointIsDefault property determines whether the
LastPoint property should be calculated from the data.

Name The Name property represents the name of the data series. In
JClass Chart, data series are named, and can be retrieved by name.

Style The Style property defines the rendering style for the data series.

Visible The Visible property determines whether the data series is
showing in the chart area. Note that data series that are not showing
are still used in axis calculations. See the Included property for
details on how to omit a data series from chart calculations.

VisibleInLegend The VisibleInLegend property determines whether or not this
series will appear in the chart legend.

Name Description

Adjust The Adjust property determines how text is justified (positioned)
in the label. Valid values include ChartText.LEFT,
ChartText.CENTER and ChartText.RIGHT. The default value
is ChartText.LEFT.

Background The Background property determines the background color used
to draw inside the chart region. Note that the Background property
is inherited from the parent ChartRegion.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent ChartRegion.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent ChartRegion.

Height The Height property determines the height of the ChartRegion.
The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the height of
the chart region is calculated by Chart (true) or taken from the
Height property (false). The default value is true.

Insets The Insets property specifies the space that a container must
leave at each of its edges. The space can be a border, a blank space,
or a title.

Name Description
180 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.4 JCAreaChartFormat

Left The Left property determines the location of the left of the
ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the left position
of the chart region is calculated by Chart (true) or taken from the
Left property (false). The default value is true.

Name The Name property specifies a string identifier for the
ChartRegion object.

Rotation The Rotation property controls the rotation of the label. Valid
values include ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270 and ChartText.DEG_0. The default
value is ChartText.DEG_0.

Text The Text property is a string property that represents the text to be
displayed inside the chart label. Default value is " " (empty string).

Top The Top property determines the location of the top of the
ChartRegion. The default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top position
of the chart region is calculated by Chart (true) or taken from the
Top property (false). The default value is true.

Visible The Visible property determines whether the associated
ChartRegion is currently visible. Default value is true.

Width The Width property determines the width of the ChartRegion.
The default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width of
the chart region is calculated by Chart (true) or taken from the
Width property (false). The default value is true.

Name Description

100Percent The 100Percent property determines whether a stacking
area will be charted versus an axis representing a percentage
between 0 and 100. Default value is false.

Name Description
Appendix A � JClass Chart Property Listing 181

A.5 JCAxis

Name Description

AnnotationMethod The AnnotationMethod property determines how axis
annotations are generated. Valid values are JCAxis.VALUE
(annotation is generated by Chart, with possible callbacks to
a label generator); JCAxis.VALUE_LABELS (annotation is
taken from a list of value labels provided by the user -- a
value label is a label that appears at a particular axis value);
JCAxis.POINT_LABELS (annotation comes from the data
source’s point labels that are associated with particular data
points); and JCAxis.TIME_LABELS (Chart generates
time/date labels based on the TimeUnit, TimeBase and
TimeFormat properties). Default value is JCAxis.VALUE.

AnnotationRotation The AnnotationRotation property specifies the rotation
of each axis label. Valid values are JCAxis.ROTATE_90,
JCAxis.ROTATE_180, JCAxis.ROTATE_270 or
JCAxis.ROTATE_NONE. Default value is
JCAxis.ROTATE_NONE.

Background The Background property determines the background
color used to draw inside the chart region. Note that the
Background property is inherited from the parent
ChartRegion.

Editable The Editable property determines whether the axis can be
affected by edit/translation/zooming. Default value is true.

Font The Font property determines what font is used to render
text inside the chart region. Note that the Font property is
inherited from the parent ChartRegion.

Foreground The Foreground property determines the foreground color
used to draw inside the chart region. Note that the
Foreground property is inherited from the parent
ChartRegion.

Formula The Formula property determines how an axis is related to
another axis object. If set, the Formula property overrides
all other axis properties. See JCAxisFormula for details.

Gap The Gap property determines the amount of space left
between adjacent axis annotations.

GeneratedValueLabels The GeneratedValueLabels property reveals the value
label at the specified index in the list of value labels
generated for this axis.

GridSpacing The GridSpacing property controls the spacing between
grid lines relative to the axis. Default value is 0.0.

GridSpacingIsDefault The GridSpacingIsDefault property determines
whether Chart is responsible for calculating the grid spacing
value. If true, Chart will calculate the grid spacing. If
false, Chart will use the provided grid spacing. Default
value is true.

GridStyle The GridStyle property controls how grids are drawn. The
default value is generated.
182 Part II � Reference Appendices

Reference Appendices
Reference Appendices
GridVisible The GridVisibleproperty determines whether a grid is
drawn for the axis. Default value is false.

Height The Height property determines the height of the
ChartRegion. The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the
height of the chart region is calculated by Chart (true) or
taken from the Height property (false). Default value is
true.

LabelGenerator The LabelGenerator property holds a reference to an
object that implements the JCLabelGenerator interface.
This interface is used to externally generate labels if the
AnnotationMethod property is set to JCAxis.VALUE.
Default value is null.

Left The Left property determines the location of the left of the
ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the left
position of the chart region is calculated by Chart (true) or
taken from the Left property (false). Default value is
true.

Logarithmic The Logarithmic property determines whether the axis
will be logarithmic (true) or linear (false). Default value is
false.

Max The Max property controls the maximum value shown on the
axis. The data max is determined by Chart. Default value is
calculated.

MaxIsDefault The MaxIsDefault property determines whether Chart is
responsible for calculating the maximum axis value. If true,
Chart calculates the axis max. If false, Chart uses the
provided axis max. Default value is true.

Min The Min property controls the minimum value shown on the
axis. The data min is determined by Chart. Default value is
calculated.

MinIsDefault The MinIsDefault property determines whether Chart is
responsible for calculating the minimum axis value. If true,
Chart will calculate the axis min. If false, Chart will use the
provided axis min. Default value is true.

Name The Name property specifies a string identifier for the
ChartRegion object. Note that the Name property is inherited
from the parent ChartRegion.

NumSpacing The NumSpacing property controls the interval between
axis labels. The default value is calculated.

NumSpacingIsDefault The NumSpacingIsDefault property determines whether
Chart is responsible for calculating the numbering spacing. If
true, Chart will calculate the spacing. If false, Chart will
use the provided numbering spacing. Default value is true.

Name Description
Appendix A � JClass Chart Property Listing 183

Origin The Origin property controls location of the origin along
the axis. The default value is calculated.

OriginIsDefault The OriginIsDefault property determines whether
Chart is responsible for positioning the axis origin. If true,
Chart calculates the axis origin. If false, Chart uses the
provided axis origin value. Default value is true.

OriginPlacement The OriginPlacement property specifies where the origin
is placed. Note that the OriginPlacement property is
only active if the Origin property has not been set. Valid
values include AUTOMATIC (places origin at minimum
value). ZERO (places origin at zero), MIN (places origin at
minimum value on axis) or MAX (places origin at maximum
value on axis). Default value is AUTOMATIC.

OriginPlacementIsDefault The OriginPlacementIsDefault property determines
whether Chart is responsible for determining the location of
the axis origin. If true, Chart calculates the origin
positioning. If false, Chart uses the provided origin
placement.

Placement The Placement property determines the method used to
place the axis. Valid values include JCAxis.AUTOMATIC
(Chart chooses an appropriate location), JCAxis.ORIGIN
(appears at the origin of another axis, specified via the
PlacementAxis property), JCAxis.MIN (appears at the
minimum axis value), JCAxis.MAX (appears at the
maximum axis value) or JCAxis.VALUE_ANCHORED
(appears at a particular value along another axis, specified
via the PlacementAxis property). Default value is
AUTOMATIC.

PlacementAxis The PlacementAxis property determines the axis that
controls the placement of this axis. In JCChart, it is
possible to position an axis at a particular position on
another axis (in conjunction with the
PlacementLocation property or the Placement
property). Default value is null.

PlacementIsDefault The PlacementIsDefault property determines whether
Chart is responsible for determining the location of the axis.
If true, Chart calculates the axis positioning. If false,
Chart uses the provided axis placement.

PlacementLocation The PlacementLocation property is used with the
PlacementAxis property to position the current axis
object at a particular point on another axis. Default value is
0.0.

Precision The Precision property controls the number of zeros that
appear after the decimal place in chart-generated axis labels.
The default value is calculated.

PrecisionIsDefault The PrecisionIsDefault determines whether Chart is
responsible for calculating the numbering precision. If true,
Chart will calculate the precision. If false, Chart will use the
provided precision. Default value is true.

Name Description
184 Part II � Reference Appendices

Reference Appendices
Reference Appendices
Reversed The Reversed property of JCAxis determines if the axis
direction is reversed. Default value is false.

TickSpacing The TickSpacing property controls the interval between
tick lines on the axis. Note: if the AnnotationMethod
property is set to POINT_LABELS, tick lines appear at point
values. The default value is calculated.

TickSpacingIsDefault The TickSpacingIsDefault property determines
whether Chart is responsible for calculating the tick spacing.
If true, Chart will calculate the tick spacing. If false, Chart
will use the provided tick spacing. Default value is true.

TimeBase The TimeBase property defines the start time for the axis.
Default value is the current time.

TimeFormat The TimeFormat property controls the format used to
generate time labels for time labelled axes. The formats
supported are the same as in Java's SimpleDateFormat
class. Default value is calculated based on TimeUnit.

TimeFormatIsDefault The TimeFormatIsDefault property determines whether
a time label format is generated automatically, or the user
value for TimeFormat is used. Default value is true.

TimeUnit The TimeUnit property controls the unit of time used for
labelling a time labelled axis. Valid TimeUnit values include
JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS,
JCAxis.DAYS, JCAxis.WEEKS, JCAxis.MONTHS and
JCAxis.YEARS. Default value is JCAxis.SECONDS.

Title The Title property controls the appearance of the axis title.

Top The Top property determines the location of the top of the
ChartRegion. The default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top
position of the chart region is calculated by Chart (true) or
taken from the Top property (false). Default value is true.

ValueLabels The ValueLabels property is an indexed property
containing a list of all annotations for an axis. Default value is
null, no value labels.

Vertical The Vertical property determines whether the associated
Axis is vertical. Default value is false.

Visible The Visible property determines whether the associated
Axis is currently visible. Default value is true. Note that the
Font property is inherited from the parent ChartRegion.

Width The Width property determines the width of the
ChartRegion. The default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the
width of the chart region is calculated by Chart (true) or
taken from the Width property (false). Default value is
true.

Name Description
Appendix A � JClass Chart Property Listing 185

A.6 JCAxisFormula

A.7 JCAxisTitle

Name Description

Constant The Constant property specifies the “c” value in the axis relationship
y2 = my + c.

Multiplier The Multiplier property specifies the “m” value in the relationship
y2 = my + c.

Originator The Originator property specifies an object representing the axis
that is related to the current axis by the formula y = mx + c. The
originator is “x”.

Name Description

Adjust The Adjust property determines how text is justified (positioned) in
the label. Valid values include ChartText.LEFT,
ChartText.CENTER and ChartText.RIGHT. Default value is
ChartText.LEFT.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent ChartText.

Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent ChartText.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent ChartText.

Height The Height property defines the height of the chart region. The
default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the height of
the chart region is calculated by Chart (true) or taken from the
Height property (false).

Left The Left property determines the location of the left of the chart
region. This property is read-only.

LeftIsDefault The LeftIsDefault property determines whether the left position
of the chart region is calculated by Chart (true) or taken from the
Left property (false).
186 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.8 JCBarChartFormat

Placement The Placement property controls where the JCAxis title is placed
relative to the “opposing” axis. Valid values include
JCLegend.NORTH or JCLegend.SOUTH for horizontal axes, and
JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHEAST,
JCLegend.SOUTHEAST, JCLegend.NORTHWEST or
JCLegend.SOUTHEAST for vertical axes. The default value is
calculated.

PlacementIsDefault The PlacementIsDefault property determines whether Chart is
responsible for calculating a reasonable default placement for the axis
title. Default value is true.

Rotation The Rotation property controls the rotation of the label. Valid
values include ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270 and ChartText.DEG_0. Default value is
ChartText.DEG_0.

Text The Text property is a string property that represents the text to be
displayed inside the chart label. Default value is " " (nothing).

Top The Top property determines the location of the top of the chart
region. This property is read-only.

TopIsDefault The TopIsDefault property determines whether the top position of
the chart region is calculated by Chart (true) or taken from the Top
property (false).

Visible The Visible property determines whether the associated Axis is
currently visible. Default value is true.

Width The Width property defines the width of the chart region. The default
value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width of the
chart region is calculated by Chart (true) or taken from the Width
property (false).

Name Description

100Percent The 100Percent property determines whether stacking bar charts will
be charted versus an axis representing a percentage between 0 and 100.
Default value is false.

ClusterOverlap The ClusterOverlap property specifies the overlap between bars.
Valid values are between -100 and 100. Default value is 0.

ClusterWidth The ClusterWidth property determines the percentage of available
space which will be occupied by the bars. Valid values are between 0 and
100. Default value is 80.

Name Description
Appendix A � JClass Chart Property Listing 187

A.9 JCCandleChartFormat

A.10 JCChart

Name Description

CandleOutlineStyle The CandleOutlineStyle determines the the candle outline style
of the complex candle chart.

Complex The Complex property determines whether candle charts use the
simple or the complex display style. When false, Chart only uses the
style referenced by getHiLoStyle() for the candle appearance.
When set to true, all four styles are used. Default value is false.

FallingCandleStyle The FallingCandleStyle determines the candle style of the
falling candle style of the complex candle chart.

HiloStyle The HiloStyle determines the candle style of the simple candle or
the HiLo line of the complex candle chart.

RisingCandleStyle The RisingCandleStyle determines the rising candle style of the
complex candle chart.

Name Description

About The About property displays contact information for Sitraka in the
bean box.

AllowUserChanges The AllowUserChanges property determines whether the user
viewing the graph can modify graph values. Default value is false.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent JCComponent.

Batched The Batched property controls whether chart updates are
accumulated. Default value is false.

CancelKey The CancelKey property specifies the key used to perform a cancel
operation.

Changed The Changed property determines whether the chart requires
recalculation. Default value is false.

ChartArea The ChartArea property controls the object that controls the
display of the graph. Default value is null.

ChartLabelManager The ChartLabelManager property manages all chart labels.

CustomizerName The CustomizerName property specifies the full class name of the Chart
Customizer. Default is com.klg.jclass.chart.customizer.ChartCustomizer.

DataView The DataView property is an indexed property that contains all the
data to be displayed in Chart. See ChartDataView for details on
data format. By default, one ChartDataView is created.
188 Part II � Reference Appendices

Reference Appendices
Reference Appendices
FillColorIndex The FillColorIndex property controls the fill color index. Default
value is 0.

Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent JCComponent.

Footer The Footer property controls the object that controls the display of
the footer. Default value is a JLabel instance

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent JCComponent.

Header The Header property controls the object that controls the display of
the header. Default value is a null.

LayoutHints The LayoutHints property sets layout hints for a child component
of JClass Chart.

Legend The Legend property controls the object that controls the display of
the legend. Default value is an instance of JCGridLegend.

LineColorIndex The LineColorIndex property controls the line color index.
Default value is 0.

NumData The NumData property indicates how many ChartDataView objects
are stored in JCChart. This is a read-only property. Default value is 1.

NumTriggers The NumTriggers property indicates how many event triggers have
been specified.

ResetKey The ResetKey property specifies the key used to perform a reset
operation.

SymbolColorIndex The SymbolColorIndex property controls the symbol color index.
Default value is 0.

SymbolShapeIndex The SymbolShapeIndex property controls the symbol shape
index. Default value is 1.

Trigger The Trigger property is an indexed property that contains all the
information necessary to map user events into Chart actions. The
Trigger property is made up of a number of EventTrigger
objects. Default value is empty.

WarningDialog The WarningDialog property determines whether JClass Chart will
display a warning dialogue when required.

Name Description
Appendix A � JClass Chart Property Listing 189

A.11 JCChartArea

Name Description

AngleUnit The AngleUnit property determines the unit of all angle values.
Default value is DEGREES.

AxisBoundingBox The AxisBoundingBox property determines whether a box is drawn
around the area bound by the inner axes.

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background property is
inherited from the parent JCChart.

Depth The Depth property controls the apparent depth of a graph. Default
value is 0.0.

Elevation The Elevation property controls distance from the X axis. Default
value is 0.0.

FastAction The FastAction property determines whether chart actions will use
an optimized mode in which it does not bother to display axis
annotations or gridlines. Default value is false.

Font The Font property determines what font is used to render text inside
the chart region. Note that the Font property is inherited from the
parent JCChart.

Foreground The Foreground property determines the foreground color used to
draw inside the chart region. Note that the Foreground property is
inherited from the parent JCChart.

HorizActionAxis The HorizActionAxis property determines the axis used for
actions (zooming, translating) in the horizontal direction. Default value
is null.

PlotArea The PlotArea property represents the region of the ChartArea that is
inside the axes. This property is read-only.

Rotation The Rotation property controls the position of the eye relative to the
Y axis. Default value is 0.0.

VertActionAxis The VertActionAxis property determines the axis used for actions
(zooming, translating) in the vertical direction. Default value is null.

Visible If true, the ChartRegion will appear on the screen. If false, it will
not appear on the screen. (Legend, header, footer and chart area are all
ChartRegion instances.) Default value is true.

XAxis The XAxis property is an indexed property that contains all the x axes
for the chart area. Default value is one X-axis.

YAxis The YAxis property is an indexed property that contains all the y axes
for the chart area. Default value is one Y-axis.
190 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.12 JCChartLabel

A.13 JCChartLabelManager

Name Description

Anchor Specifies how the label is to be positioned relative to the specified point.
Valid values are JCChartLabel.NORTHEAST, JCChartLabel.
NORTHWEST, JCChartLabel.NORTH, JCChartLabel.EAST,
JCChartLabel.WEST, JCChartLabel. SOUTHEAST,
JCChartLabel.SOUTHWEST, and JCChartLabel. SOUTH.

AttachMethod Specifies how the label is attached to the chart. Valid values are
JCChartLabel.ATTACH_COORD (attach label to an absolute point
anywhere on the chart), JCChartLabel.ATTACH_DATACOORD
(attach label to a point in the data space on the chart area), and
JCChartLabel.ATTACH_DATAINDEX (attach the label to a specific
point/bar/slice on the chart).

Component The Swing component used as the chart label. By default, this is a
JLabel instance.

Coord The coordinate in the chart's space where the label is to be attached.

DataCoord The coordinate in the chart area's data space where the label is to be
attached.

DataIndex A data index representing the point/bar/slice in the chart to which the
label is to be attached.

DataView For labels using ATTACH_DATACOORD, this property specifies which
ChartDataView's axes should be used.

DwellLabel When DwellLabel is set to true, the label is only displayed when the
cursor is over the point/bar/slice that the label is attached to. This
property is only used when the label is attached using
ATTACH_DATAINDEX. When set to false (the default), the label is
always displayed.

Offset Offset specifies where the label should be positioned relative to the
position the labels thinks it should be, depending on what the label's
attachMethod is.

ParentManager The ParentManager property is the ChartLabelManager instance
that controls the JCChartLabel.

Text The Text property controls the text displayed inside the label.

Name Description

AutoLabelList The AutoLabelList property is a two-dimensional array
of automatically-generated JCChartLabel instances, one for
every point and series. The inner array is indexed by point;
the outer array by series. Default is empty.
Appendix A � JClass Chart Property Listing 191

A.14 JCChartStyle

Name Description

FillColor The FillColor property determines the color used to fill regions in
chart. Default value is generated.

FillImage The FillImage property determines the image used to paint the fill
region of Bar and Area charts. Default value is null.

FillPattern The FillPattern property determines the fill pattern used to fill
regions in chart. This is only supported in JDK 1.2 and higher. Default
value is JCFillStyle.SOLID.

FillStyle The FillStyle property controls the appearance of filled areas in
chart. See JCFillStyle for additional properties. Note that all
JCChartStyle properties of the format Fill* are virtual properties
that map to properties of JCFillStyle.

LineCap The LineCap property specifies the cap style used to end a line.
This is only supported in JDK 1.2 and higher. Valid values include
BasicStroke.CAP_BUTT, BasicStroke.CAP_ROUND, and
BasicStroke.CAP_SQUARE.

LineColor The LineColor property determines the color used to draw a line.
Default value is generated.

LineJoin The LineJoin property specifies the join style used to join two lines.
This is only supported in JDK 1.2 and higher. Valid values include
BasicStroke.JOIN_MITER, BasicStroke.JOIN_BEVEL, and
BasicStroke.JOIN_ROUND.

LinePattern The LinePattern property dictates the pattern used to draw a line.
Valid values include JCLineStyle.NONE, JCLineStyle.SOLID,
JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH,
JCLineStyle.LSL_DASH and JCLineStyle.DASH_DOT. This is
only supported in JDK 1.2 and higher. Default value is
JCLineStyle.SOLID.

LineStyle The LineStyle property controls the appearance of lines in chart.
See JCLineStyle for additional properties.

LineWidth The LineWidth property controls the line width. This is only
supported in JDK 1.2 and higher. Default value is 1.

SymbolColor The SymbolColor property determines the color used to paint the
symbol. Default value is generated.

SymbolCustomShape The SymbolCustomShape property contains an object derived from
JCShape that is used to draw points. See JCShape for details. Default
value is null.

SymbolShape The SymbolShape property determines the type of symbol that will
be drawn. Valid values include JCSymbolStyle.NONE,
JCSymbolStyle.DOT, JCSymbolStyle.BOX,
JCSymbolStyle.TRIANGLE, JCSymbolStyle.DIAMOND,
JCSymbolStyle.STAR, JCSymbolStyle.VERT_LINE,
JCSymbolStyle.HORIZ_LINE, JCSymbolStyle.CROSS,
JCSymbolStyle.CIRCLE and JCSymbolStyle.SQUARE. Default
value is generated.
192 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.15 JCFillStyle

A.16 JCGridLegend

SymbolSize The SymbolSize property determines the size of the symbol. Default
value is 6.

SymbolStyle The SymbolStyle property controls the symbol that represents an
individual point. See JCSymbolStyle for additional properties. Note
that all JCChartStyle properties of the format Symbol* are virtual
properties that map to properties of JCSymbolStyle.

Name Description

Background The Background property determines the background color used when
painting patterned fills.

Color The Color property determines the color used to fill regions in chart.
The default value is generated.

CustomPaint The CustomPaint property specifies the TexturePaint object used to
paint the fill region when the pattern is set to CUSTOM_PAINT. This is only
supported in JDK 1.2 and higher.

Image The Image property determines the image used to paint the fill region when the
pattern is set to CUSTOM_FILL or CUSTOM_STACK. The default value is null.

Pattern The Pattern property determines the fill pattern used to fill regions in chart.
This is only supported in JDK 1.2 and higher. The default value is
JCFillStyle.SOLID.

Available fill patterns are NONE, SOLID, 25_PERCENT, 50_PERCENT,
75_PERCENT, HORIZ_STRIPE, VERT_STRIPE, 45_STRIPE,
135_STRIPE, DIAG_HATCHED, CROSS_HATCHED, CUSTOM_FILL,
CUSTOM_PAINT, or, for bar charts only, CUSTOM_STACK.

Name Description

Anchor The Anchor property determines the position of the legend relative to the
ChartArea. Valid values include JCLegend.NORTH, JCLegend.SOUTH,
JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHWEST,
JCLegend.SOUTHWEST, JCLegend.NORTHEAST and
JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

Background The Background property determines the background color used to
draw inside the legend. Note that the Background property is inherited
from the parent JCChart.

Font The Font property determines what font is used to render text inside the
legend. Note that the Font property is inherited from the parent JCChart.

Name Description
Appendix A � JClass Chart Property Listing 193

A.17 JCHLOCChartFormat

Foreground The Foreground property determines the foreground color used to
draw inside the legend. Note that the Foreground property is inherited
from the parent JCChart.

GroupGap The GroupGap property determines the gap between groups of items in
the chart legend (e.g. the columns/rows associated with a data view).

InsideItemGap The InsideItemGap property determines the gap between the symbol
and text portions of a legend item.

ItemGap The ItemGap property determines the gap between the legend items in
the same group.

MarginGap The MarginGap property determines the gap between the edge of the
legend and the start of the item layout.

Orientation The Orientation property determines how legend information is laid
out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

SymbolSize The SymbolSize property determines the size of the symbol. Default
value is 6.

Visible The Visible property determines the gap between the legend items in
the same group.

Name Description

OpenCloseFullWidth The OpenCloseFullWidth property indicates whether the open
and close tick indications are drawn across the full width of the Hi-
Lo bar or just on one side. The default value is false.

ShowingClose The ShowingClose property indicates whether the close tick
indication is shown or not. The tick appears to the right of the Hi-
Lo line. The default value is true.

ShowingOpen The ShowingOpen property indicates whether the open tick
indication is shown or not. The tick appears to the left of the Hi-Lo
line. The default value is true.

TickSize The TickSize property specifies the tick size for open and close
ticks.

Name Description
194 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.18 JCLegend

A.19 JCLineStyle

Name Description

Anchor The Anchor property determines the position of the legend relative to
the ChartArea. Valid values include JCLegend.NORTH,
JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST,
JCLegend.NORTHWEST, JCLegend.SOUTHWEST,
JCLegend.NORTHEAST and JCLegend.SOUTHEAST. The default
value is JCLegend.EAST.

Background The Background property determines the background color used to
draw inside the legend. Note that the Background property is
inherited from the parent JCChart.

Border The Border property sets the border of a component. Note that the
Border property is inherited from JComponent.

Font The Font property determines what font is used to render text inside
the legend. Note that the Font property is inherited from the parent
JCChart.

Foreground The Foreground property determines the foreground color used to
draw inside the legend. Note that the Foreground property is
inherited from the parent JCChart.

Opaque The Opaque property determines the background color. If the
component is completely opaque, the background will be filled with the
background color. Otherwise, the background is transparent, and
whatever is underneath will show through. Note, that the Opaque
property is inherited from JComponent.

Orientation The Orientation property determines how legend information is laid
out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is
JCLegend.VERTICAL.

Visible The Visible property determines whether the legend is currently
visible. Default value is false.

Name Description

Cap The Cap property specifies the cap style used to end a line. This is only
supported in JDK 1.2 and higher. Valid values include
BasicStroke.CAP_BUTT, BasicStroke.CAP_ROUND, and
BasicStroke.CAP_SQUARE.

Color The Color property determines the color used to draw a line. The default value
is generated.

Join The Join property specifies the join style used to join two lines. This is only
supported in JDK 1.2 and higher. Valid values include
BasicStroke. JOIN_MITER, BasicStroke.JOIN_BEVEL, and
BasicStroke. JOIN_ROUND.
Appendix A � JClass Chart Property Listing 195

A.20 JCMultiColLegend

Pattern The Pattern property dictates the pattern used to draw a line. Valid values
include JCLineStyle.NONE, JCLineStyle.SOLID,
JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH,
JCLineStyle.LSL_DASH and JCLineStyle.DASH_DOT. This is only
supported in JDK 1.2 and higher. The default value is JCLineStyle.SOLID.

Width The Width property controls the line width. This is only supported in JDK 1.2
and higher. The default value is 1.

Name Description

Anchor The Anchor property determines the position of the legend
relative to the ChartArea. Valid values include JCLegend.NORTH,
JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST,
JCLegend.NORTHWEST, JCLegend.SOUTHWEST,
JCLegend.NORTHEAST and JCLegend.SOUTHEAST. The
default value is JCLegend.EAST.

Background The Background property determines the background color used
to draw inside the legend. Note that the Background property is
inherited from the parent ChartRegion.

Border The Border property sets the border of a component. Note that
the Border property is inherited from JComponent.

Font The Font property determines what font is used to render text
inside the legend. Note that the Font property is inherited from the
parent JCChart.

Foreground The Foreground property determines the foreground color used
to draw inside the legend. Note that the Foreground property is
inherited from the parent JCChart.

GroupGap The GroupGap property determines the gap between groups of
items in the chart legend (e.g. the columns/rows associated with a
data view).

Insets The Insets property specifies the space that a container must
leave at each of its edges. The space can be a border, a blank
space, or a title.

InsideItemGap The InsideItemGap property determines the gap between the
symbol and text portions of a legend item.

ItemGap The ItemGap property determines the gap between the legend
items in the same group.

MarginGap The MarginGap property determines the gap between the edge of
the legend and the start of the item layout.

NumColumns The NumColumns property determines the number of columns in
this legend. If the number of columns is set to zero (the default),
then the NumColumns will be adjusted automatically.

Name Description
196 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.21 JCPieChartFormat

NumRows The NumRows property determines the number of rows in this
legend. If the number of rows is set to zero (the default), the
number of rows will be adjusted automatically.

Orientation The Orientation property determines how legend information
is laid out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is
JCLegend.VERTICAL.

SymbolSize The SymbolSize property determines the size of the symbol.
Default value is 6.

Name Description

ExplodeList The ExplodeList property specifies a list of exploded pie slices in the
pie charts. Default value is an empty list.

ExplodeOffset The ExplodeOffset property specifies the distance a slice is exploded
from the center of a pie chart. Default value is 10.

MinSlices The MinSlices property represents the minimum number of pie slices
that Chart will try to display before grouping slices into the other slice.
Default value is 5.

OtherLabel The OtherLabel property represents used on the "other" pie slice. As
with other point labels, the "other" label is a ChartText instance. Default
value is " " (empty string).

OtherStyle The OtherStyle property specifies the style used to render the "other"
pie slice.

SortOrder The SortOrder property determines the order in which pie slices will be
displayed. Note that the other slice is always last in any ordering. Valid
values include JCPieChartFormat.ASCENDING_ORDER,
JCPieChartFormat.DESCENDING_ORDER and
JCPieChartFormat.DATA_ORDER. Default value is
JCPieChartFormat.DATA_ORDER.

StartAngle The position in the pie chart where the first pie slice is drawn. A value of
zero degrees represents a horizontal line from the center of the pie to the
right-hand side of the pie chart; a value of 90 degrees represents a vertical
line from the center of the pie to the top-most point of the pie chart; a
value of 180 degrees represents a horizontal line from the center of the pie
to the left-hand side of the pie chart; and so on. Slices are drawn
clockwise from the specified angle. Values must lie in the range from zero
degrees to 360 degrees. The default value is 135 degrees.

Name Description
Appendix A � JClass Chart Property Listing 197

A.22 JCPolarRadarChartFormat

A.23 JCSymbolStyle

ThresholdMethod The ThresholdMethod property determines how the
ThresholdValue property is used. If the method is SLICE_CUTOFF,
the ThresholdValue is used as a cutoff to determine what items are
lumped into the other slice. If the method is PIE_PERCENTILE, items
are groups into the other slice until it represents "ThresholdValue" percent
of the pie. Default value is SLICE_CUTOFF.

YAxisAngle The YAxisAngle property determines the angle that the Y-axis makes
with the axis origin base. Default value is 0 degrees.

Name Description

HalfRange The HalfRange property determines whether the X-axis for Polar charts
consists of two half-ranges or one full range from 0 to 360 degrees.

OriginBase The OriginBase property determines the angle of the theta axis origin
in Polar, Radar, and Area Radar charts. Angles are based on zero degrees
pointing east (the normal rectangular X axis direction) with positive angles
going counter-clockwise. The angle units are assumed to be the current
value of the chart area’s angleUnit property.

RadarCircularGrid The YAxisGridCircular property determines whether gridlines are
circular or “webbed” for Radar and Area Radar charts.

YAxisAngle The YAxisAngle property determines the angle of the Y-axis in in Polar,
Radar, and Area Radar charts. Angles are relative to the current origin
base. The angle units are assumed to be the current value of the chart
area’s angleUnit property.

Name Description

Color The Color property determines the color used to paint the symbol. The
default value is generated.

CustomShape The CustomShape property contains an object derived from JCShape that
is used to draw points. See JCShape for details. The default value is null.

Shape The Shape property determines the shape of symbol that will be drawn.
Valid values include JCSymbolStyle.NONE, JCSymbolStyle.DOT,
JCSymbolStyle.BOX, JCSymbolStyle.TRIANGLE,
JCSymbolStyle.DIAMOND, JCSymbolStyle.STAR,
JCSymbolStyle.VERT_LINE, JCSymbolStyle.HORIZ_LINE,
JCSymbolStyle.CROSS, JCSymbolStyle.CIRCLE and
JCSymbolStyle.SQUARE. The default value is JCSymbolStyle.DOT.

Size The Size property determines the size of the symbol. The default value is 6.

Name Description
198 Part II � Reference Appendices

Reference Appendices
Reference Appendices
A.24 JCValueLabel

A.25 PlotArea

Name Description

ChartText The ChartText property controls the ChartText associated with this Value
label. The default value is a ChartText instance.

Text The Text property specifies the text displayed inside the label. The default
value is " " (empty string).

Value The Value property controls the position of a label in data space along a
particular axis. The default value is 0.0.

Name Description

Background The Background property determines the background color used to
draw inside the chart region. Note that the Background is inherited from
the parent ChartRegion.

Bottom The Bottom property determines the location of the bottom of the
PlotArea

BottomIsDefault The BottomIsDefault property determines whether the Bottom of the
chart region is calculated by Chart (true) or taken from the Bottom
property (false).

Foreground The Foreground property property determines the color used to draw
the axis bounding box controlled by JCChartArea. Note that the
Foreground property is inherited from the parent ChartRegion.

Left The Left property determines the location of the left of the PlotArea

LeftIsDefault The LeftIsDefault property determines whether the left position of
the chart region is calculated by Chart (true) or taken from the Left
property (false).

Right The Right property determines the Right of the PlotArea.

RightIsDefault The RightIsDefault property determines whether the Right of the
chart region is calculated by Chart (true) or taken from the Right
property (false).

Top The Top property determines the location of the top of the PlotArea.

TopIsDefault The TopIsDefault property determines whether the top position of the
chart region is calculated by Chart (true) or taken from the Top property
(false).
Appendix A � JClass Chart Property Listing 199

A.26 SimpleChart

Name Description

AxisOrientation The AxisOrientation property determines if the X- and Y-axes
are inverted and reversed.

Background The Background property determines the background color used
to draw inside the chart region. Note that the Background
property is inherited from the parent JCComponent.

ChartType The ChartType property determines the chart type of the first set
of data in the chart.

Data The Data property controls the file or URL used for the first set of
data in chart.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent JCComponent.

FooterFont The FooterFont property determines what font is used to
render text inside the footer region.

FooterText The FooterText property holds the text that is displayed in the
footer. The default value is " " (empty string).

Foreground The Foreground property determines the foreground color used
to draw inside the chart region. Note that the Foreground
property is inherited from the parent JCComponent.

HeaderFont The HeaderFont property determines what font is used to render
text inside the header region.

HeaderText The HeaderText property holds the text that is displayed in the
header. The default value is " " (empty string).

LegendAnchor The LegendAnchor property determines the position of the
legend relative to the ChartArea. Valid values include NORTH,
SOUTH, EAST, WEST, NORTHWEST, SOUTHWEST, NORTHEAST and
SOUTHEAST. The default value is EAST.

LegendOrientation The LegendOrientation property determines how legend
information is laid out. Valid values include VERTICAL and
HORIZONTAL. The default value is VERTICAL.

LegendVisible The LegendVisible property determines whether the legend is
currently visible. Default value is false.

SwingDataModel Sets the chart’s data source to use a specified Swing TableModel
object, instead of using the Data property.

View3D The View3D property combines the values of the Depth,
Elevation, and Rotation properties defined in
JCChartArea. Depth controls the apparent depth of a graph.
Elevation controls the distance above the X-axis for the 3D
effect. Rotation controls the position of the eye relative to the
Y-axis for the 3D effect. The default value is "0.0,0.0,0.0".
200 Part II � Reference Appendices

Reference Appendices
Reference Appendices
XAxisAnnotation-
Method

The XAxisAnnotationMethod property determines how axis
annotations are generated. Valid values include VALUE (annotation
is generated by Chart, with possible callbacks to a label generator);
VALUE_LABELS (annotation is taken from a list of value labels
provided by the user — a value label is a label that appears at a
particular axis value); POINT_LABELS (annotation comes from
the data source's point labels that are associated with particular
data points); and TIME_LABELS (Chart generates time/date labels
based on the TimeUnit, TimeBase and TimeFormat
properties). The default value is VALUE.

XAxisGridVisible The XAxisGridVisible property determines whether a grid is
drawn for the axis. The default value is false.

XAxisLogarithmic The XAxisLogarithmic property determines whether the first
X-axis will be logarithmic (true) or linear (false). The default
value is false.

XAxisMinMax The XAxisMinMax controls both the XAxisMin and XAxisMax
properties. The XAxisMin property controls the minimum value
shown on the axis. If a null string is used, Chart will calculate the
axis min. The data min is determined by Chart. The default value is
calculated. The XAxisMax property controls the maximum value
shown on the axis. If a null string is used, Chart will calculate the
axis max. The data max is determined by Chart. The default value is
calculated.

XAxisNumSpacing The XAxisNumSpacing property controls the interval between
axis labels. If a null string is used, Chart will calculate the interval.
The default value is calculated.

XAxisTitleText The XAxisTitleText property specifies the text that will appear
as the X-axis title. The default value is " " (empty string).

XAxisVisible The XAxisVisible property determines whether the first X-
axis is currently visible. Default value is true.

YAxisAnnotation-
Method

The YAxisAnnotationMethod property determines how axis
annotations are generated. Valid values include VALUE (annotation
is generated by Chart, with possible callbacks to a label generator);
VALUE_LABELS (annotation is taken from a list of value labels
provided by the user — a value label is a label that appears at a
particular axis value); POINT_LABELS (annotation comes from
the data source's point labels that are associated with particular
data points); and TIME_LABELS (Chart generates time/date labels
based on the TimeUnit, TimeBase and TimeFormat
properties). The default value is VALUE.

YAxisGridVisible The YAxisGridVisible property determines whether a grid is
drawn for the axis.

YAxisLogarithmic The YAxisLogarithmic property determines whether the first
Y-axis will be logarithmic (true) or linear (false). The default
value is false.

Name Description
Appendix A � JClass Chart Property Listing 201

YAxisMinMax The YAxisMinMax controls both the YAxisMin and YAxisMax
properties. The YAxisMin property controls the minimum value
shown on the axis. If a null string is used, Chart will calculate the
axis min. The data min is determined by Chart. The default value is
calculated. The YAxisMax property controls the maximum value
shown on the axis. If a null string is used, Chart will calculate the
axis max. The data max is determined by Chart. The default value is
calculated.

YAxisNumSpacing The YAxisNumSpacing property controls the interval between
axis labels. If a null string is used, Chart will calculate the interval.
The default value is calculated.

YAxisTitleText The YAxisTitleText property specifies the text that will appear
as the Y axis title. The default value is " " (empty string).

YAxisVisible The YAxisVisible property determines whether the first Y-axis
is currently visible. Default value is true.

Name Description
202 Part II � Reference Appendices

Appendix B
Distributing Applets

and Applications
Using JClass JarMaster to Customize the Deployment Archive

B.1 Using JClass JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to
consider when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass
components, your deployment archive will contain many unused class files unless
you customize your JAR. Optimally, the deployment JAR should contain only your
classes and the third-party classes you actually use. For example, the jcchart.jar, which
you used to develop your applet or application, contains classes and packages that
are only useful during the development process and that are not referenced by your
application. These classes include the Property Editors and BeanInfo classes. JClass
JarMaster helps you create a deployment JAR that contains only the class files
required to run your application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of
the deployment archive quickly and easily. Using JClass JarMaster you can select the
classes you know must belong in your JAR, and JarMaster will automatically search
for all of the direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save
yourself the time and trouble of building a JAR manually and determining the
necessity of each class or package. Your deployment JAR will take less time to load
and will use less space on your server as a direct result of excluding all of the classes
that are never used by your applet or application.

For more information about using JarMaster to create and edit JARs, please consult
its online documentation.

JClass JarMaster is installed automatically as part of the install process for
JClass DesktopViews. It is also available as a separate product. For more details
please refer to Sitraka’s Web site.
203

http://www.sitraka.com

204 Part II � Reference Appendices

Appendix C
HTML Property Reference

ChartDataView Properties � ChartDataViewSeries Properties

JCAxis X- and Y-axes Properties � JCBarChartFormat Properties
JCCandleChartFormat Properties � JCChart Properties � JCChartArea Properties

JCChartLabel Properties � JCDataIndex Properties

JCHLOCChartFormat Properties � JCHiLoChartFormat Properties
JCLegend Properties � JCPieChartFormat Properties

JCPolarRadarChartFormat Properties � Header and Footer Properties

Example HTML File

This appendix lists the syntax of JClass Chart properties when specified in an
HTML file. For example, the following HTML code sets the X-axis annotation
method property:

 <PARAM NAME="xaxis.annotationMethod" VALUE="POINT_LABELS">

C.1 ChartDataView Properties

Java Property HTML Syntax Value Type

Auto Label data.autoLabel boolean

Buffer Plot Data data.bufferPlotData boolean

Chart Type data.chartType (enum)

Data data AppletDataSource

Data File dataFile, data1File, or
data2File

URLDataSource,
FileDataSource

Data Name dataNamen String1

Draw Front Plane data.drawFrontPlane boolean

Fast Update data.fastUpdate boolean
205

jclass.chart.JCChart.html#PLOT

1n is the data view number; not needed for first data view.

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

C.2 ChartDataViewSeries Properties

Hole Value data.holeValue double

Inverted data.Inverted boolean

Outline Color data.outlineColor Color

Point Labels data.pointLabels String

Visible data.Visible boolean

Visible In Legend data.VisibleInLegend boolean

X Axis data.xaxis X axis name

Y Axis data.yaxis Y axis name

Java Property HTML Syntax Value Type

Fill Background data.seriesn.fill.background enum

Fill Color data.seriesn.fill.color Color

Fill Color Index data.seriesn.fill.colorIndex int

Fill Image data.seriesn.fill.image Image

Fill Pattern data.seriesn.fill.pattern enum

First Point data.seriesn.firstPoint int

Included data.seriesn.Included boolean

Label data.seriesn.label String

Last Point data.seriesn.lastPoint int

Line Color data.seriesn.line.color Color

Line Color Index data.seriesn.line.colorIndex int

Line Cap data.seriesn.line.cap enum

Line Join data.seriesn.line.join enum

Line Pattern data.seriesn.line.pattern enum

Line Width data.seriesn.line.width int

Symbol Color data.seriesn.symbol.color Color

Symbol Color Index data.seriesn.symbol.colorIndex int

Symbol Shape data.seriesn.symbol.shape (enum)

Java Property HTML Syntax Value Type
206 Part II � Reference Appendices

jclass.chart.JCSymbolStyle.html#DOT

Reference Appendices
Reference Appendices
Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

C.3 JCAxis X- and Y-axes Properties

Symbol Shape Index data.seriesn.symbol.symbolIndex int

Symbol Size data.seriesn.symbol.size int

Visible data.seriesn.Visible boolean

Visible In Legend data.seriesn.VisibleInLegend boolean

Java Property HTML Syntax Value Type

Annotation Method [xy]axis.annotationMethod (enum)

Annotation Rotation [xy]axis.annotationRotation (enum)

Editable [xy]axis.Editable boolean

Font [xy]axis.font Font

Foreground [xy]axis.foreground Color

Formula Constant [xy]axis.formula.constant double

Formula Multiplier [xy]axis.formula.multiplier double

Formula Originator [xy]axis.formula.originator Axis Name, eg, xaxis1

Gap [xy]axis.gap int

Grid Color [xy]axis.grid.Color Color

Grid Visible [xy]axis.grid.Visible boolean

Grid Spacing [xy]axis.grid.Spacing double

Logarithmic [xy]axis.Logarithmic boolean

Max [xy]axis.max double

Min [xy]axis.min double

Num Spacing [xy]axis.numSpacing double

Origin [xy]axis.origin double

Origin Placement [xy]axis.originPlacement (enum)

Placement [xy]axis.placement (enum)

Placement Axis [xy]axis.placementAxis Axis Name, eg. xaxis1

Placement Location [xy]axis.placementLocation double

Java Property HTML Syntax Value Type
Appendix C � HTML Property Reference 207

jclass.chart.JCAxis.html#VALUE
jclass.chart.JCAxis.html#ROTATE_NONE
jclass.chart.JCAxis.html#AUTOMATIC
jclass.chart.JCAxis.html#AUTOMATIC

Note: xaxis and yaxis are the names of the first axes, generated when chart
properties are saved to an HTML file; additional axes are named [xy]axis1,
[xy]axis2, [xy]axisn.

C.4 JCBarChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

Precision [xy]axis.precision int

Reversed [xy]axis.Reversed boolean

Tick Spacing [xy]axis.tickSpacing double

Time Base [xy]axis.timeBase Date

Time Format [xy]axis.timeFormat String

Time Unit [xy]axis.timeUnit (enum)

Title Adjust [xy]axis.title.adjust (enum)

Title Background [xy]axis.title.background Color

Title Font [xy]axis.title.font Font

Title Foreground [xy]axis.title.foreground Color

Title Placement [xy]axis.title.placement (enum)

Title Rotation [xy]axis.title.rotation 0, 90, 180, 270

Title Text [xy]axis.title.text String

Title Visible [xy]axis.title.Visible boolean

Value Labels [xy]axis.valueLabels String[]
(values separated by “;”)

Visible [xy]axis.Visible boolean

Java Property HTML Syntax Value Type

100 Percent data.Bar.100Percent boolean

Cluster Overlap data.Bar.clusterOverlap int

Cluster Width data.Bar.clusterWidth int

Java Property HTML Syntax Value Type
208 Part II � Reference Appendices

jclass.chart.JCAxis.html#SECONDS
jclass.chart.ChartText.html#LEFT
jclass.chart.JCLegend.html#NORTH
jclass.chart.ChartText.html#DEG_0

Reference Appendices
Reference Appendices
C.5 JCCandleChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

C.6 JCChart Properties

1String of format bordertype|param1|param2|...
2labeln is the number of Chart Labels when chart properties are saved to HTML.
Note: Valid values for any Trigger property are NONE, CTRL, SHIFT, ALT, or META
(equivalent to right-mouse-click).

Java Property HTML Syntax Value Type

Complex data.Candle.Complex boolean

Java Property HTML Syntax Value Type

Allow User Changes allowUserChanges boolean

Background background Color

Batched Batched boolean

Border border String1

Cancel Key cancelKey int

Customize Trigger customizeTrigger (enum)
(see Note for details)

Depth Trigger depthTrigger (enum)
(see Note for details)

Edit Trigger editTrigger (enum)
(see Note for details)

Font font Font

Foreground foreground Color

Label Name labeln String2

Opaque opaque boolean

Parameter File paramFile File from which to
load additional
properties

Pick Trigger PickTrigger (enum)
(see Note for details)

Reset Key resetKey int

Rotate Trigger RotateTrigger (enum)
(see Note for details)

Translate Trigger TranslateTrigger (enum)
(see Note for details)

Zoom Trigger ZoomTrigger (enum)
(see Note for details)
Appendix C � HTML Property Reference 209

C.7 JCChartArea Properties

1String of format bordertype|param1|param2|...

Java Property HTML Syntax Value Type

Angle Unit chartArea.angleUnit (enum)

Axis Bounding Box chartArea.axisBoundingBox boolean

Background chartArea.background Color

Border border String1

Depth chartArea.depth int

Elevation chartArea.elevation int

Fast Action chartArea.fastAction boolean

Font chartArea.font Font

Foreground chartArea.foreground Color

Height height int

Horiz Action Axis chartArea.horizActionAxis Axis Name, eg. xaxis1

Insets chartArea.insets Insets

Opaque opaque boolean

Plot Area Background chartArea.plotArea.background Color

Plot Area Bottom chartArea.plotArea.bottom int

Plot Area Foreground chartArea.plotArea.foreground Color

Plot Area Left chartArea.plotArea.left int

Plot Area Right chartArea.plotArea.right int

Plot Area Top chartArea.plotArea.top int

Rotation chartArea.rotation int

Vert Action Axis chartArea.vertActionAxis Axis Name, eg. xaxis1

Visible chartArea.Visible boolean

Width width int

X x int

Y y int
210 Part II � Reference Appendices

jclass.chart.JCChartUtil.html#DEGREES

Reference Appendices
Reference Appendices
C.8 JCChartLabel Properties

1The index of the last label. Used as the upper boundary on labels and data indices
during load. Only needs to be explicitly specified if n is greater than 99.

Note: label1 is the name of the first Chart Label, generated when chart properties
are saved to an HTML file; additional labels are named label2, label3, labeln.

Java Property HTML Syntax Value Type

Anchor labeln.anchor (enum)

Attach Method labeln.attachMethod (enum)

Background labeln.background Color

Connected labeln.connected boolean

Coord labeln.coord Point

Data Attach X labeln.dataAttachX int

Data Attach Y labeln.dataAttachY int

Data Index labeln.dataIndex DataIndex Name, eg.
indexName

Data View labeln.dataView ChartDataView

Dwell Label labeln.DwellLabel boolean

Font labeln.font Font

Foreground labeln.foreground Color

Label Name labelNamen String (where n is
the label number)

Last Label Index lastLabelIndex int1

Offset labeln.offset Font

Text labeln.text String

Visible labeln.Visible boolean
Appendix C � HTML Property Reference 211

jclass.chart.JCChartLabel.html#NORTHEAST
jclass.chart.JCChartLabel.html#ATTACH_COORD

C.9 JCDataIndex Properties

Note: n is the index number.

C.10 JCHLOCChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

C.11 JCHiLoChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

Data View indexn.dataView ChartDataView

Distance indexn.distance int

Index Name indexNamen String

Point indexn.point Font

Series Index indexn.seriesIndex int

Java Property HTML Syntax Value Type

Line Color data.HLOC.seriesn.hilo.line.color Color

Line Width data.HLOC.seriesn.hilo.line.width int

Open Close Full Width data.HLOC.openCloseFullWidth boolean

Showing Close data.HLOC.showingClose boolean

Showing Open data.HLOC.showingOpen boolean

Tick Size data.HLOC.seriesn.tickSize int

Java Property HTML Syntax Value Type

Line Color data.HiLo.seriesn.line.color Color

Line Width data.HiLo.seriesn.line.width int
212 Part II � Reference Appendices

Reference Appendices
Reference Appendices
C.12 JCLegend Properties

1String of format bordertype|param1|param2|...

C.13 JCPieChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

Anchor legend.anchor (enum)

Background legend.background Color

Border legend.border String1

Font legend.font Font

Foreground legend.foreground Color

Height legend.height int

Opaque legend.opaque boolean

Orientation legend.orientation (enum)

Visible legend.Visible boolean

Width legend.width int

X legend.x int

Y legend.y int

Java Property HTML Syntax Value Type

Explode Offset data.Pie.explodeOffset int

Min Slices data.Pie.minSlices int

Other Fill Background data.Pie.other.fill.backgro
und

enum

Other Fill Color data.Pie.other.fill.color Color

Other Fill Color Index data.Pie.other.fill.colorIn
dex

int

Other Fill Image data.Pie.other.fill.image Image

Other Fill Pattern data.Pie.other.fill.pattern enum

Other Label data.Pie.other.label String

Sort Order data.Pie.sortOrder ASCENDING,
DESCENDING

Start Angle data.Pie.startAngle double

Threshold Method data.Pie.thresholdMethod (enum)

Threshold Value data.Pie.thresholdValue int
Appendix C � HTML Property Reference 213

jclass.chart.JCLegend.html#NORTH
jclass.chart.JCLegend.html#HORIZONTAL
jclass.chart.JCPieChartFormat.html#SLICE_CUTOFF

C.14 JCPolarRadarChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved
to an HTML file; additional datasets are named data1, data2, datan.

C.15 Header and Footer Properties

1String of format bordertype|param1|param2|...

Java Property HTML Syntax Value Type

HalfRange data.PolarRadar.halfRange boolean

OriginBase data.PolarRadar.originBase double

RadarCircularGrid data.PolarRadar.radarCircularGrid boolean

YAxisAngle data.PolarRadar.yAxisAngle double

Java Property HTML Syntax Value Type

Background header.background
footer.background

Color

Border border String1

Font header.font
footer.font

Font

Foreground header.foreground
footer.foreground

Color

Height height int

Opaque opaque boolean

Text header.orientation
footer.orientation

String

Visible header.visible
footer.visible

boolean

Width width int

X x int

Y y int
214 Part II � Reference Appendices

Reference Appendices
Reference Appendices
C.16 Example HTML File

The following HTML file defines the chart shown below:

<HTML>
<HEAD>
<TITLE>JClass Chart</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFCC">

<CENTER><H2>Bar/Plot Combination</H2></CENTER>
<P>
<HR COLOR=CC3333>
<P>
<BLOCKQUOTE>
</BLOCKQUOTE>
<P>
<CENTER>
<APPLET CODE=com/klg/jclass/chart/applet/JCChartApplet.class ARCHIVE="lib/jcchartK.jar"
CODEBASE="../../.." HEIGHT=420 WIDTH=550>
<PARAM NAME=background VALUE="210-180-140">
<PARAM NAME=foreground VALUE="black">
<PARAM NAME=font VALUE="Dialog-PLAIN-12">
<PARAM NAME=CustomizeTrigger VALUE="Meta">
<PARAM NAME=allowUserChanges VALUE="true">
<PARAM NAME=footer.y VALUE="55">
<PARAM NAME=footer.font VALUE="TimesRoman-PLAIN-20">
<PARAM NAME=footer.text VALUE="Profits have recovered but share prices remain low">
<PARAM NAME=footer.visible VALUE="true">
<PARAM NAME=header.border VALUE="bevel|raised">
<PARAM NAME=header.font VALUE="TimesRoman-BOLD-24">
<PARAM NAME=header.background VALUE="245-222-180">
<PARAM NAME=header.text VALUE="Yoyodyne snaps back">
Appendix C � HTML Property Reference 215

<PARAM NAME=header.visible VALUE="true">
<PARAM NAME=legend.y VALUE="345">
<PARAM NAME=legend.border VALUE="etched|raised">
<PARAM NAME=legend.font VALUE="Dialog-PLAIN-14">
<PARAM NAME=legend.background VALUE="245-222-180">
<PARAM NAME=legend.visible VALUE="true">
<PARAM NAME=legend.anchor VALUE="South">
<PARAM NAME=legend.orientation VALUE="Horizontal">
<PARAM NAME=chartArea.y VALUE="90">
<PARAM NAME=chartArea.border VALUE="bevel|lowered">
<PARAM NAME=chartArea.background VALUE="245-222-180">
<PARAM NAME=chartArea.plotArea.background VALUE="255-232-190">
<PARAM NAME=xaxis.annotationMethod VALUE="Value_Labels">
<PARAM NAME=xaxis.placement VALUE="Min">
<PARAM NAME=xaxis.placementAxis VALUE="yaxis">
<PARAM NAME=xaxis.grid.Color VALUE="210-180-140">
<PARAM NAME=xaxis.valueLabels VALUE="1.0; '93; 2.0; '94; 3.0; '95; 4.0; '96; 5.0; '97">
<PARAM NAME=xaxis.title.visible VALUE="false">
<PARAM NAME=yaxis.placement VALUE="Min">
<PARAM NAME=yaxis.grid.visible VALUE="true">
<PARAM NAME=yaxis.grid.Color VALUE="210-180-140">
<PARAM NAME=yaxis.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis.title.text VALUE="$millions">
<PARAM NAME=chartArea.yaxisName1 VALUE="yaxis1">
<PARAM NAME=yaxis1.placement VALUE="Max">
<PARAM NAME=yaxis1.min VALUE="4.0">
<PARAM NAME=yaxis1.max VALUE="22.0">
<PARAM NAME=yaxis1.grid.Color VALUE="black">
<PARAM NAME=yaxis1.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis1.title.text VALUE="share prices ">
<PARAM NAME=data.chartType VALUE="BAR">
<PARAM NAME=data.outlineColor VALUE="black">
<PARAM NAME=data.series1.line.colorIndex VALUE="0">
<PARAM NAME=data.series1.line.width VALUE="8">
<PARAM NAME=data.series1.fill.colorIndex VALUE="0">
<PARAM NAME=data.series1.fill.color VALUE="0-84-255">
<PARAM NAME=data.series1.fill.pattern VALUE="Per_25">
<PARAM NAME=data.series1.symbol.colorIndex VALUE="0">
<PARAM NAME=data.series1.symbol.shapeIndex VALUE="1">
<PARAM NAME=data.series1.symbol.color VALUE="255-165-0">
<PARAM NAME=data.series1.symbol.size VALUE="7">
<PARAM NAME=data.series1.label VALUE="Profits">
<PARAM NAME=data.Bar.clusterWidth VALUE="50">
<PARAM NAME=data VALUE="
 ARRAY ' ' 1 5
 1.0 2.0 3.0 4.0 5.0
 24.0 30.2 36.4 -19.8 10.6
 ">
<PARAM NAME=dataName1 VALUE="data1">
<PARAM NAME=data1.outlineColor VALUE="black">
<PARAM NAME=data1.series1.line.colorIndex VALUE="1">
<PARAM NAME=data1.series1.line.color VALUE="red">
<PARAM NAME=data1.series1.line.width VALUE="7">
<PARAM NAME=data1.series1.fill.colorIndex VALUE="1">
<PARAM NAME=data1.series1.symbol.colorIndex VALUE="1">
<PARAM NAME=data1.series1.symbol.shapeIndex VALUE="2">
<PARAM NAME=data1.series1.symbol.color VALUE="255-165-0">
<PARAM NAME=data1.series1.symbol.shape VALUE="Dot">
<PARAM NAME=data1.series1.symbol.size VALUE="14">
<PARAM NAME=data1.series1.label VALUE="Share Prices">
216 Part II � Reference Appendices

Reference Appendices
Reference Appendices
<PARAM NAME=data1.yaxis VALUE="yaxis1">
<PARAM NAME=data1 VALUE="
ARRAY ' ' 1 5
 1.0 2.0 3.0 4.0 5.0
 20.5 12.3 14.8 6.2 5.75
 ">
</APPLET>
<P>
<I>More Applet Demos...</I>
<P>
</CENTER>
<!-- copyright information added -->
<P>
<HR COLOR=CC3333>
<P>
<P><A HREF="
http://www.sitraka.com/corporate/copyright.html">Copyright©
1997-2002 Sitraka
</BODY>
</HTML>
Appendix C � HTML Property Reference 217

218 Part II � Reference Appendices

Appendix D
Porting JClass 3.6.x Applications

Overview � Swing-like API � New Data Model � New Data Subpackage

New Beans Subpackage � Data Binding Changes � New Applet Subpackage
Pluggable Header/Footer � JCChartLabelManager

Chart Label Components � Use of Collection Classes � No More JCString

D.1 Overview

The major changes are listed in the table below. Each change is discussed in more
detail with a recommended porting strategy.

Change Rationale

applet subpackage Makes it easier to find applet load/save code. Important for users who
wish to remove the applet code from deployment JARs.

beans subpackage Makes it easier to find beans. Important for users who wish to
remove the beans from deployment JARs.

Chart label components Chart labels are no longer derived from components. Instead, they
contain components. This is a more flexible scheme, since any
JComponent-derived object can be used as a chart label.

Data Binding Changes The data binding for Chart has been rewritten, resulting in some
minor API changes.

data subpackage Makes it easier to find stock data sources. Stock data sources now
include the JC prefix.

JCChartLabelManager Not every user requires chart labels. To reduce download, chart label
management is deferred to an object called JCChartLabelManager.

New data model Old model dated back to JDK 1.0.2. New model is easier to
understand.

No more JCString JCString has been replaced by HTML in cells.

Package name change
 (com.klg.jclass.chart)

Old package name pre-dated naming standard.
219

D.2 Swing-like API

Chart's header, footer, chart area, and legend, and the chart itself are all derived
from JComponent. The following changes to methods apply:

Pluggable header/footer Header and footer are now JComponents. This allows re-use of
Swing code, and adds flexibility to the product. It also adds casts to
your code.

Swing-like API JClass 4 is Swing-based. Applies to applet PARAM tags as well.

Use of collection classes Collection classes weren't available for JDK 1.0.2. Use of collection
classes adds flexibility.

Chart 3.* Chart 4.* and higher

get/setBorderType() Replaced by JComponent.setBorder()
Note that enum-based replacements for standard Swing borders from
BorderFactory may be created.

get/setBorderWidth() In Swing, borders have their own width.

get/setHeight() All replaced by JComponent.setBounds().

get/setHeight()
get/setWidth()
get/setLeft()
get/setTop()
Related IsDefault methods

All replaced by JComponent.setBounds(), JComponent.setLocation()
and JComponent.setSize(). In Chart 4.* and higher, layout options for
chart area, legend, header and footer are somewhat more limited.
However, JCChart will now accept new layout managers. Also,
JCChart allows specification of layout hints for header, footer, chart
area and legend using JCChart.setLayoutHints().

setInets() No direct equivalent. Use borders.

get/setIsShowing() JComponent.get/setVisible()

draw() Now using Swing's paint mechanism.

Change Rationale
220 Part II � Reference Appendices

Reference Appendices
Reference Appendices
In general, any property in Chart 3.* that started with "Is" has been modified.
Changes include:

D.3 New Data Model

The data model for Chart 4 is a change to a data series-based model from a table-
based model used in Chart 3.

As an example, consider charting the following data points:

(1,20)
(2, 70)
(3,50)

In Chart 3.*, the data model would have looked like:

import jclass.chart.Chartable;
import java.util.Vector;

public class simple implements Chartable {

double xdata[] = {1, 2, 3,};
double ydata[] = {20, 70, 50,};

public int getDataInterpretation() {
 return Chartable.ARRAY;
}

public Object getDataItem(int row, int column) {
 if (row == 0) {
 return new Double(xdata[column]);
 }
 else if (row == 1) {
 return new Double(ydata[column]);
 }
 return null;
}

Catagory Chart 3.* Chart 4.* and higher

IsShowingVisible ChartDataViewSeries.IsShowing ChartDataViewSeries.Visible

ChartDataViewSeries.IsShowingIn
Legend

ChartDataViewSeries.VisibleInLegend

ChartDataView.IsShowingInLegend ChartDataView.VisibleInLegend

JCAxis.GridIsShowing JCAxis.GridVisible

JCAxis.IsShowing JCAxis.Visible

JCAxisTitle.IsShowing JCAxisTitle.Visible

IsIncluded ChartDataViewSeries.IsIncluded ChartDataViewSeries.Included

IncludedIsEditable JCAxis.IsEditable JCAxis.Editable
Appendix D � Porting JClass 3.6.x Applications 221

public Vector getRow(int row) {
 Vector rval = new Vector();
 if (row == 0) {
 for (int i = 0; i < xdata.length; i++) {
 rval.addElement(new Double(xdata[i]));
 }
 }
 else if (row == 1) {
 for (int i = 0; i < ydata.length; i++) {
 rval.addElement(new Double(xdata[i]));
 }
 }
 return rval;
}

public int getNumRows() {
 return 2;
}

public String[] getPointLabels() {
 return pointLabels;
}
}

(Note that the series and point label methods are not shown.)

In Chart 4.* and higher, the corresponding code is much simpler:

import com.klg.jclass.chart.ChartDataModel;

public class simple implements ChartDataModel {
double xdata[] = {1, 2, 3,};
double ydata[] = {20, 70, 50,};

public double[] getXSeries(int index) {
 return xdata;
}

public double[] getYSeries(int index) {
 return ydata;
}

public int getNumSeries() {
 return 1;
}
}

Most important to note is the different focus. In Chart 3.*, the model viewed data as
a table. Depending on the data interpetation, each row was either an x series or a y
series. In Chart 4.* and higher, the x and y data series are returned explicitly. Also,
Double objects are no longer used. (Chart simply converted them to double
anyways.)
222 Part II � Reference Appendices

Reference Appendices
Reference Appendices
Chart 3.* allowed data models to update chart via Observer/Observable or
event/listener. Chart 4.* and higher only allows event/listener.

Listed below are Chart 3.* data model classes, and their equivalent in Chart 4.* and
higher

D.4 New Data Subpackage

All stock data sources have been moved into a data subpackage. Some of the data
source names have been changed. The next table explains the changes.

Chart 3.* Chart 4.* and higher

Chartable ChartDataModel and LabelledChartDataModel

EditableChartable EditableChartDataModel

ChartDataModel No equivalent. Observer/Observable is no longer used for updated
chart data sources.

ChartDataListener ChartDataListener

ChartDataEvent ChartDataEvent

ChartDataSupport ChartDataSupport

No equivalent ChartDataManageable
Tells JCChart that an object can manage ChartDataListeners

No equivalent ChartDataManager
Manages ChartDataListeners

Chart 3.* (jclass.chart) Chart 4.* and higher (com.klg.jclass.chart.data)

No equivalent BaseDataSource
Common base class for most stock data sources.

AppletDataSource JCAppletDataSource

ChartSwingDataSource JCChartSwingDataSource

VectorDataSource JCDefaultDataSource
Note that JCDefaultDataSource provides functionality that
VectorDataSource did not

No equivalent JCEditableDataSource
Editable version of JCDefaultDataSource
JCFileDataSource

InputStreamDataSource JCInputStreamDataSource

StringDataSource JCStringDataSource

URLDataSource JCURLDataSource

JDBCDataSource JDBCDataSource
Appendix D � Porting JClass 3.6.x Applications 223

D.5 New Beans Subpackage

All the beans have been moved to the beans subpackage. There has been no bean
property changes.

D.6 Data Binding Changes

The data binding beans remain in the same places. However, the
dataBindingMetaData property has been replaced by dataBindingConfig.

D.7 New Applet Subpackage

All code dealing with loading or saving of Chart as HTML PARAM tags has been
moved to an applet subpackage. This change should be transparent to users.
Deployment JARs for users not using HTML load/save can be made smaller by
removing the applet subpackage.

Some parameter changes were necessary, mostly as a result of core chart API
changes.

These changes are shown below:

Chart 3.* Chart 4.* and higher

LeftMargin, TopMargin, BottomMargin, RightMargin No equivalent

BorderType No equivalent

BorderWidth No equivalent

DoubleBuffer No equivalent

Offset No equivalent

IsShowing IsVisible

IsShowingInLegend VisibleInLegend

IsIncluded Included

No equivalent Join, Cap and Background in series.line

axis.IsVertical axis.Vertical

axis.IsLogarithmic axis.Logarithmic

axis.IsReversed axis.Reversed

axis.GridIsShowing axis.grid.visible

axis.Grid* axis.grid.*
Note that axis.grid now supports all line
style properties, including patterns

axis.IsEditable axis.editable
224 Part II � Reference Appendices

Reference Appendices
Reference Appendices
D.8 Pluggable Header/Footer

Headers and footers can now be any JComponent-derived object. By default,
JCChart.getHeader() and JCChart.getFooter() return a JLabel. However, both
methods return objects of type JComponent. This means a cast is required. Code that
used to look like this:

chart.getHeader().setText("Foo")

can be converted to look like this:

JLabel header = (JLabel)chart.getHeader();
header.setText("Foo");

The full API for headers and footers is now defined by the JComponent-derived
object used for header/footer. By default, this is JLabel. Refer to the JLabel API for
more details.

chartLabel.attachX/Y chartLabel.coord format: x,y

chartLabel.IsConnected chartLabel.connected

chartLabel.IsDwellLabel chartLabel.dwellLabel

candleChartFormat.isComplex candleChartFormat.complex

HLOCChartFormat.isShowingOpen HLOCChartFormat.showingOpen

HLOCChartFormat.isShowingClose HLOCChartFormat.showingClose

HLOCChartFormat.isOpenCloseFullWidth HLOCChartFormat.openCloseFullWidth

Chart 3.* Chart 4.* and higher
Appendix D � Porting JClass 3.6.x Applications 225

D.9 JCChartLabelManager

As previously mentioned, chart label management has been removed to a delegate
object. The delegate must be of type JCChartLabelManager. A default
implementation called JCDefaultChartLabelManager is provided.

Use of the delegate results in a smaller deployment JAR for users who don't use chart
labels. It also helps focus the JCChart API by removing the chart label-related
methods.

D.10 Chart Label Components

JCChartLabel is no longer a component, but contains a component. Therefore, all of
the usual component methods like getBackground(), getFont(), etc. need to be
changed and prefaced by a call to getComponent()

e.g. getComponent().getBackground())

 3.* (JCChart) 4.* and higher (JCChartLabelManager)

void addChartLabel(JCChartLabel label) Moved to JCChartLabelManager

void removeChartLabel(JCChartLabel label) Moved to JCChartLabelManager

int getNumChartLabels() Moved to JCChartLabelManager

void removeAllChartLabels() Moved to JCChartLabelManager

JCChartLabel getChartLabels(int index) Moved to JCChartLabelManager

void setChartLabels(int index, JCChartLabel label) Moved to JCChartLabelManager

JCChartLabel[] getChartLabels() List JCChartLabelManager.getChartLabels()

void setChartLabels(JCChartLabel[] s) void JCChartLabelManager.setChartLabels(List s)
226 Part II � Reference Appendices

Reference Appendices
Reference Appendices
D.11 Use of Collection Classes

JClass Chart aggregates objects like JCAxis, ChartDataView and
ChartDataViewSeries using collections. In Chart3.*, Vectors were used. The API has
been updated to take advantage of the flexibility offered by collections.

In most cases, Chart would build the object arrays manually. Collections (and their
iterators) allow Chart to expose the internal collection directly.

Changes include:

For convenience, many of the index-based accessors remain. For example, you can
still grab axes based on an index:

JCAxis xaxis = chart.getChartArea().getXAxis(1);

Collections allow users to take advantage of iterators. In Chart 3.*, iterating over all
the x axes required the following code:

JCAxis[] xaxes = chart.getChartArea().getXAxis();
for (int i = 0; i < xaxes; i++) {
 JCAxis xaxis = xaxes[i];
 // Do something interesting
}

In Chart 4.* and higher, iterators can be used:

for (ListIterator li = chart.getChartArea().getXAxes().listIterator();
 i.hasNext();) {
 JCAxis xaxis = (JCAxis)li.next();
}

D.12 No More JCString
JCStrings have been replaced by HTML in cells. This is supported by Swing, and
has been added to Chart where appropriate.

You can now put raw HTML into headers and footers, as long as the text starts with
"<html>". HTML is also valid in axis annotations, axis titles and legend
elements.

Chart 3.* Chart 4.* and higher

String[] ChartDataView.getPointLabels() List ChartDataView.getPointLabels()

ChartDataViewSeries[]
ChartDataView.getSeries()

List ChartDataView.getSeries()

JCChartStyle[]
ChartDataView.getChartStyle()

List ChartDataView.getChartStyle()

ChartDataView[] JCChart.getDataView() List JCChart.getDataView()

JCChartLabel[] JCChart.getChartLabels() List JCChartLabelManager.getChartLabels()
List JCDefaultChartLabelManager.getChartLabels()

JCAxis[] JCChartArea.getXAxis() List JCChartArea.getXAxes()

JCAxis[] JCChartArea.getYAxis() List JCChartArea.getYAxes()
Appendix D � Porting JClass 3.6.x Applications 227

228 Part II � Reference Appendices

Index

“other” slice 34
3D effect 56, 87, 159

A
actions, programming 166
add a database connection 61
AllowUserChanges property 19
Anchor 152
Applet 119
applets, HTML parameter listing 205
Area Radar chart 3, 10, 23, 93, 103, 108, 116, 124

axis 16
data array 93, 124
FastUpdate 166
gridlines 31, 115
mapping 165
min value 110
picking 170
point labels 104

array data format 124
array data layout 13
ATTACH_COORD 150
ATTACH_DATACOORD 150
ATTACH_DATAINDEX 150
Attach_Method 151
AutoLabel 152
AutoLabels 150
Automatic Labelling 83
axis

adding second Y 116
Area Radar chart 16
custom label 108
direction 111
grid lines 115
labelling 102
logarithmic 113
min and max 112
origins 112
Polar chart 16
Radar chart 16
rotating annotation 114
rotating title 114
title 114

axis annotation 102
overview 102
PointLabels 104
TimeLabels 106

ValueLabels 105
Values 103

Axis Bounding Box 86
axis bounds 112
axis direction 111
AxisAnnotation 71
AxisGrid 72
AxisMisc 74
axisOrientation property 53
AxisOrigin 73
AxisPlacement 74
AxisPointLabels 75
AxisScale 76
AxisTimeLabels 77
AxisTitle 78

B
background property 55
bar

cluster overlap 33, 37
cluster width 33, 37

bar chart
3D effect 159
image fill 168
origin placement 112
special properties 33, 37

Bar3d and 3d Effect 98
base 119
BaseDataSource 118
batching chart updates 163
Bean

overview 41
properties 41

BeanBox 42
Beans

MultiChart 69
borders

using 155
229

C
Candle charts

ChartStyle properties used 39
simple and complex display 40

chart
Area Radar 3, 10, 23, 93, 103, 108, 116, 124
basics 9
orientation 111
Polar 3, 10, 23, 93, 103, 115, 116, 124
Radar 3, 10, 23, 93, 103, 108, 116, 124
setting type 10
user interaction 166

chart customizer
enabling 19
using 19

chart elements
positioning 158

Chart labels 150
chart terminology 9
chart type 10
chartable data source 13, 117
ChartAppearance 86
ChartArea

positioning 158
ChartAreaAppearance 86
ChartDataModel 19
ChartDataView 150

ChartType property 10
containment hierarchy 18
converting coordinates 163
HTML property syntax 205
IsInverted property 111
PointLabels 104
programming ChartStyles 153
property summary 177

ChartDataViewSeries 19
property summary 179

ChartLabels property 150
charts, outputting 161
ChartStyles

area charts 153
bar charts 153
pie charts 153
plot and financial charts 153
use in financial chart types 39

ChartStyles, customizing 153
ChartText

property summary 180
ChartType 96
ChartType property 10, 38
chartType property 54
choosing chart type 10
cluster overlap, bar chart 33, 37
cluster width, bar chart 33, 37
collections of objects 16
colors

setting 156
comments on product 6
Constant 76

container 43
Converting

4.0.x to 4.5 140
converting coordinates 163
coordToDataCoord() method 164
coordToDataIndex() method 164
custom

axes label 108
custom axes labels 108
CUSTOM_FILL 193
CUSTOM_PAINT 193
CUSTOM_STACK 193
customizer, using 19
CustomPaint 193

D
data

array layout 13
general layout 13
layout 13
min and max 112

data array
Radar chart 93, 124

data arrray
Area Radar chart 93, 124
Polar chart 93, 124

data binding 63, 128
data binding Beans 50
data bound 128
data bounds 112
data formatting 118, 124
data layout

introduction 13
data loading from XML source 120
data view 81
DataBean 63
DataBinding property 65
DataBindingMetaData property 66
dataBindingMetaData property 62
DataChart 81
dataCoordToCoord() method 164
dataIndexToCoord() method 164
DataMisc 82
dataSet property 61
DataSource 19, 83
DataSources 118
DataView, multiple axes 116
Date 108
Date methods 108
dateToValue() metho 108
Depth 56, 87
Draw on Front Plane 83
drawLegendItem() 145
drawLegendItemSymbol() 145
DSdbChart 63, 130
DSdbChart Bean 65
dwell labels 151
230 Index

E
Elevation 56, 87
encoding chart as image 161
EPS file format 161, 162
error bar charts 39
EventTrigger 167
ExplodeList property 36
ExplodeOffset property 36

F
FAQs 5
FastUpdate 165
FileDataSource 118

tutorial 92
financial charts, ChartStyle properties used 39
Font 87
font property 55, 56
fonts

choosing 156
footer

positioning 158
FooterAppearance 86
footerText 56
foreground property 55
formatted file 118
full-range X-axis, Polar charts 27

G
general data format 124
general data layout 13
getOutlineColor() 145
GIF 157
GIF file format 161, 162
grid lines 72, 115

 53
gridlines 29

H
HalfRange property 27
half-range X-axis, Polar charts 27
header

positioning 158
HeaderAppearance 86
headers and footers 139
HeaderText 80
headerText 56
Hi-Lo charts, ChartStyle properties used 39
hole value 136
HoleValueChartDataModel 136
Horizontal 57
host 119
HTML 119
HTML property syntax

ChartDataView 205
Hypertext Markup Language (HTML) 14

I
IDE

setting properties 15
IDEs, information on using 5
image formats 161
interacting with the chart 166
Interactive Labels 151
introduction to JClass Chart 1
inverting a chart 111
inverting X- and Y-axis 97
IsComplex property 40
IsConnected 153
IsInverted property 111
IsOpenCloseFullWidth

using for error bar charts 39
IsOpenCloseFullWidth property 39
IsShowingClose property 39
IsShowingOpen property 39

J
JavaBeans

overview 41
JBdbChart Bean 61
JBuilder 58, 130
JCAppletDataSource 118
JCAxis

AnnotationRotation property 114
containment hierarchy 19
IsLogarithmic property 113
IsReversed property 111
Min and Max properties 112
second Y-axis 116

JCAxis.POINT_LABELS 102
JCAxis.TIME_LABELS 102
JCAxis.VALUE 102
JCAxis.VALUE_LABELS 102
JCAxisFormula

property summary 182
JCAxisTitle 114

property summary 186
Rotation property 114
Text property 114

JCBarChartFormat
property summary 187

JCBorderStyle
property summary 181, 191

JCCandleChartFormat 39
property summary 188

JCChart
object hierarchy 18
property summary 188

JCChartApplet 14
JCChartArea 18

3D effect properties 159
JCChartLabel 18, 150

property summary 191
JCChartLegendManager 145, 147
Index 231

JCChartStyle 19, 153
property summary 192

JCChartSwingDataSource 118
JCDataIndex 165

returned by pick() method 174
JCDefaultDataSource 118
JCEditableDataSource 118
JCEncodeComponent class 162
JCFileDataSource 118
JCFillStyle 154

property summary 193
JCGridLegend 140, 142

property summary 193
JCHiloChartFormat 39
JCHLOCChartFormat 39

property summary 194
JCInputStreamDataSource 118
JCLabelGenerator interface 108
JClass Chart

overview 1
JClass Chart Beans 49
JClass DataSource 63, 130
JClass license agreement 4
JClass technical support 4

contacting 5
JCLegend 18, 140, 142, 143

property summary 195
JCLegend Toolkit 142
JCLegendItem 140, 141, 143, 144, 147
JCLegendPopulator 142, 144, 145
JCLegendRenderer 142, 145
JCLineStyle 154

property summary 195
JCMultiColLegend 140

property summary 196
JCMultiColumnLegend 142
JCPieChartFormat 34, 36

property summary 197, 198
JCString 114
JCStringDataSource 118
JCSymbolStyle 155

property summary 198
JCTitle 18
JCURLDataSource 118
JCValueLabel

property summary 199
JDBC 58, 130
JDBCDataSource 118
JdbcDataSource 128
JPEG file format 161, 162

L
label

Adding Connecting Lines 153
Adding Labels to a Chart 150
Adding Text 152
Attaching to a Data Item 151
Attaching to Chart Area Coordinates 151

Attaching to Plot Area Coordinates 151
attachment method 150
Automatically Generated Dwell Labels 152
demos 150
dwell 151
Formatting Text 152
Individual Dwell Labels 152
interactive 150, 151
Positioning Labels 152
static 150

learning JClass Chart 99
legend

custom 143
custom legends 142
custom, population 144
custom, rendering 145
multiple-column 142
positioning 158
single-column 142
using 140

legendAnchor property 57
LegendAppearance 86
legendIsShowing property 57
LegendLayout 80
legendOrientation property 57
legends

customizing 142
license agreement 4
listener

adding JClass Chart 138
adding JClass ServerChart 138

logarithmic axis 113

M
map 164, 165
MultiChart 49, 69

3D planes 83
adding footer text 79
adding header text 80
appearance controls 85
automatic dwell labels 83
axis annotation 71
axis controls 71
axis number precision 76
axis numbering 76
axis origin 73
axis placement 74
axis precision 76
axis range 76
axis tick marks 76
axis titles 78
AxisRelationships 76
background 85
bounding box 86
chart areas 85
chart types 82
controlling 3D planes 83
data view 83
232 Index

data views 82
events 88
foreground 85
grid lines 72
hiding an axis 74
IsEditable 74
label rotation 72
legend layout 80
loading data from a file 83
point labels 75
selecting axes for a data view 81
tick spacing 76
time labels 77
value labels 78

MultiChart showing a data view 83
multiple x-axes 124
Multiplier 76

O
object containment hierarchy 18
ODBC database connection 63
Origin property 113
origin, setting in Polar charts 25
Originator 76
OriginBase property 25
OriginPlacement property 112
origins 112
other slice, pie charts 34
outputting charts to images 161
Outputting JClass Charts 161

P
PCL file format 161, 162
PDF file format 161, 162
Pick 169
pick 164
PIE 54
pie chart

“other” slice 35
3D effect 159
labelling pies with PointLabels 104
special properties 34
thresholding 34
use with unpick() method 174

plot1.java demo program 89
plot2.java demo program 95
PlotArea

property summary 199
PlotAreaAppearance 86
PNG 157
PNG file format 161, 162
PointLabels axis annotation 104
PointLabels, use with pie charts 104
Polar chart 3, 10, 23, 93, 103, 115, 116, 124

axis 16
axis direction 112

data array 93, 124
FastUpdate 166
fill 154
gridlines 27, 115
half-range 27
mapping 165
max value 110
min value 110
picking 169
point labels 104

Polar charts
OriginBase property 25
setting origin 25

positioning chart elements 158
pre-formatted data 124
product feedback 6
programming actions 166
programming basics

collections 16
properties

100Percent 34, 38
access in IDE 15
Anchor 141
AnnotationMethod 13, 94, 102, 106
AnnotationRotation 114
Background 157
ChartType 10
ClusterOverlap 33
ClusterWidth 33
Color 35, 154, 155, 156, 157
CustomShape 155
DataView 141
Depth 159
Elevation 159
FastAction 165
FastUpdate 165
FillStyle 154
Font 156
Foreground 157
GridIsShowing 115
GridSpacing 115
GridStyle 115
HorizActionAxis 168
IsBatched 163
IsLogarithmic 113
IsReversed 111
IsShowing 93, 116
LineStyle 154
Max 112
Min 112
MinSlices 35
NumSpacing 103
Origin 113
OriginPlacement 112
OtherLabel 35
OtherStyle 35
Pattern 35, 154
PlotArea 156
Precision 103
Rotation 114, 159
Index 233

Shape 155
Size 155
SortOrder 36
SymbolStyle 155
Text 93
ThresholdMethod 34
TickSpacing 103
TimeBase 106
TimeFormat 106, 107
TimeUnit 106
Title (axis) 114
VertActionAxis 168
Width 154

property summary
ChartDataView 177
ChartDataViewSeries 179
ChartText 180
JCAxisFormula 182
JCAxisTitle 186
JCBarChartFormat 187
JCBorderStyle 181, 191
JCCandleChartFormat 188
JCChart 188
JCChartLabel 191
JCChartStyle 192
JCFillStyle 193
JCGridLegend 193
JCHLOCChartFormat 194
JCLegend 195
JCLineStyle 195
JCMultiColLegend 196
JCPieChartFormat 197, 198
JCSymbolStyle 198
JCValueLabel 199
PlotArea 199
SimpleChart 200

PS file format 161, 162

Q
query property IJBuilder) 61
QueryDataSet (JBuilder) 61

R
Radar 16
Radar chart 3, 10, 23, 93, 103, 108, 116, 124

data array 93, 124
FastUpdate 166
gridlines 29, 115
mapping 165
min value 110
picking 169
point labels 104

related documents 4
reversing an axis 111
Rotation 56, 87
rotation 72

S
setFillGraphics() 145
setLegendPopulator() 150
setLegendRenderer() 150
setText 152
setting properties in an IDE 15
SimpleChart 49

3D Effects 56
Axis Annotation Method 51
Axis Number Intervals 52
Axis Orientation 53
Axis Properties 51
Axis Range 52
Chart Types 54
Data Interpretation 54
data loading 59, 83
Font 55
footer 56
Foreground and Background Colors 55
header 56
Hiding Axes 53
Legend Layout 57
Legends 57
Logarithmic Notation 52
property summary 200
Showing Grids 53
Showing the Legend 57
tutorial 42
using Swing TableModel data object 60, 84

Sitraka technical support 4
contacting 5

special terms 9
sql query 65
stacking area chart 37
stacking bar chart

100 percent axis 34, 38
overview 37

StartAngle property 36, 213
support 4, 5

contacting 5
FAQs 5
IDE information 5

support plans, features of 4
Swing TableModel object, use with SimpleChart 60, 83,

84
SwingDataModel 120

T
TableModel 120
TableModel, use with SimpleChart 60, 83, 84
technical support 4, 5

contacting 5
FAQs 5

terminology 9
Text property 152
TexturePaint 193
time base 77
234 Index

time format 77
time unit 77
Title property (axis) 114
titles 139
transparent images 157
Trigger property 19
TriggerList 88
tutorial 42, 89

U
unmap 164, 165
unpick 164, 174
URL 118

V
Value annotation 51
Value_Labels notation 52
ValueLabels 105
ValueLabels axis annotation 105
values annotation 103
valueToDate() method 108
View3D property 56, 87
View3DEditor 56

X
xAnnotationMethod property 51
X-axis

full or half-range 27
when chart inverted 111
when logarithmic 113

xAxisGridIsShowing property 53
xAxisIsLogarithmic property 52
xAxisIsShowing property 53
xAxisMinMax property 52
xAxisNumSpacing property 52
xAxisTitleText property 51
XML 120

using in JClass 121

Y
yAnnotationMethod property 51
Y-axis

second Y-axis 116
when chart inverted 111

yAxisGridIsShowing property 53
yAxisIsLogarithmic property 52
yAxisIsShowing property 53
yAxisMinMax property 52
yAxisNumSpacing property 52
yAxisTitleText property 51

Z
zoom 88
Index 235

236 Index

	Preface
	Using JClass Chart
	�JClass��Chart Basics
	1.1 Chart Areas
	1.2 Chart Types
	1.3 Loading Data
	1.4 Setting and Getting Object Properties
	1.5 Other Programming Basics
	1.6 �JClass��Chart Inheritance Hierarchy
	1.7 �JClass��Chart Object Containment
	1.8 The Chart Customizer
	1.9 Internationalization

	New Chart Types and Special�Chart�Properties
	2.1 New Chart Type: Polar Charts
	2.2 New Chart Type: Radar Charts
	2.3 New Chart Type: Area Radar Charts
	2.4 JCPolarRadarChartFormat Class
	2.5 Special Bar Chart Properties
	2.6 Special Pie Chart Properties
	2.7 Special Area Chart Properties
	2.8 Hi-Lo and Candle Charts

	SimpleChart Bean Tutorial
	3.1 Introduction to JavaBeans
	3.2 SimpleChart Bean Tutorial

	Bean Reference
	4.1 Choosing the Right Bean
	4.2 Standard Bean Properties
	4.3 Data-Loading Methods

	MultiChart
	5.1 Introduction to MultiChart
	5.2 Getting Started with MultiChart
	5.3 MultiChart Property Reference

	Chart Programming Tutorial
	6.1 Introduction
	6.2 A Basic Plot Chart
	6.3 Loading Data From a File
	6.4 Adding Header, Footer, and Labels
	6.5 Changing to a Bar Chart
	6.6 Inverting Chart Orientation
	6.7 Bar3d and 3d Effect
	6.8 End-User Interaction
	6.9 Get Started Programming with �JClass��Chart

	Axis Controls
	7.1 Creating a New Chart in a Nutshell
	7.2 Axis Labelling and Annotation Methods
	7.3 Positioning Axes
	7.4 Chart Orientation and Axis Direction
	7.5 Setting Axis Bounds
	7.6 Customizing Origins
	7.7 Logarithmic Axes
	7.8 Titling Axes and Rotating Axis Elements
	7.9 Adding Grid Lines
	7.10 Adding a Second Axis

	Data Sources
	8.1 Overview
	8.2 Pre-Built Chart DataSources
	8.3 Loading Data from a File
	8.4 Loading DataSource from a URL
	8.5 Loading Data from an Applet
	8.6 Loading Data from a Swing TableModel
	8.7 Loading Data from an XML Source
	8.8 Data Formats
	8.9 Data Binding: Specifying Data from Databases
	8.10 Making Your Own Chart Data Source
	8.11 Making an Updating Chart Data Source

	Text and Style Elements
	9.1 Header and Footer Titles
	9.2 Legends
	9.3 Chart Labels
	9.4 Chart Styles
	9.5 Borders
	9.6 Fonts
	9.7 Colors
	9.8 Positioning Chart Elements
	9.9 3D Effect

	Advanced Chart Programming
	10.1 Outputting �JClass��Charts
	10.2 Batching Chart Updates
	10.3 Coordinate Conversion Methods
	10.4 FastAction
	10.5 FastUpdate
	10.6 Programming End-User Interaction
	10.7 Image-Filled Bar Charts
	10.8 Pick
	10.9 Using Pick and Unpick
	10.10 Unpick

	Reference Appendices
	�JClass��Chart Property Listing
	Distributing Applets and Applications
	HTML Property Reference
	Porting JClass 3.6.x Applications

	Index

