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Abstract

Global compensation of the field errors based on the min-
imization of nonlinearities in a one-turn map was found
to be very effective in reducing the detrimental effects of
magnetic field errors in the LHC during collision. With a
few groups of low-order correctors, nonlinear terms in the
one-turn map can be minimized order-by-order and, conse-
quently, the dynamic aperture is substantially increased and
the phase-space region occupied by beams becomes much
more linear. One advantage of the global correction is the
possibility of further optimization of the correction based
on a direct measurement of a one-turn map with beam-
dynamics experiments.

1 INTRODUCTION

During collisions, the dynamic aperture of the LHC is lim-
ited by the multipole field errors of superconducting high-
gradient quadrupoles (MQX) of the inner triplets of the in-
teraction regions (IRs). Control of these field errors is one
of the primary tasks in the design of the LHC IRs. With the
current reference harmonics of Fermilab and KEK MQXs
[1], correctors are necessary for the IRs in order to meet
the dynamic aperture requirement of the LHC. Because of
the beam separation in the triplets due to an angle cross-
ing of colliding beams, high-order multipoles of the field
errors feed down to low-order nonlinearities of the system
and they are important to the aperture limitation. It is, how-
ever, difficult to correct those high-order multipoles errors
by using the traditional methods of local correction since it
is difficult and costly to build high-order multipole correc-
tors. The global correction of magnetic field errors based
on the minimization of the nonlinearities in a Poincar´e map
of a circular accelerator is an alternative way to reduce the
detrimental effects of both the systematic and random field
errors [2]. In a circular accelerator, the nonlinear beam
dynamics can be described by a Poincar´e map known as
one-turn map. The one-turn map contains all global in-
formation of nonlinearities in the system. By minimizing
the nonlinear terms of a one-turn map order-by-order with
a few groups of multipole correctors, one can reduce the
nonlinearity of the system globally [2]. In this paper, the
effectiveness and feasibility of the global correction of the
magnetic field errors in the triplets of IRs is investigated for
the LHC collision lattice. It was found that the global cor-
rection strategy is effective and efficient in increase of the
dynamic aperture and improvement of the linearity of the
phase-space region occupied by beams for the LHC dur-
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ing collisions. One advantage of the global correction of
nonlinear fields is that the correction may be further opti-
mized during the commission of an accelerator based on
measurements of a one-turn map in beam-dynamics exper-
iments. Methods for a direct measurement of a one-turn
map with beam-dynamics experiment has recently been
proposed and technique problems associated with such a
measurement has been studied in detail [3, 4, 5, 6].

This paper is organized as follows. In Section 2, we dis-
cuss the principle of global correction of nonlinear fields.
In Section 3, the test lattice for the LHC during collisions is
presented. In Sections 4, the effectiveness of the global cor-
rection on the improvement of the dynamic aperture and the
improvement of the linearity of the phase space are studied.
In Section 5, we discuss the robustness of the global cor-
rection. Section 6 contains a conclusion.

2 GLOBAL COMPENSATION OF THE
NONLINEAR FIELDS

Neglecting the coupling between the transverse and lon-
gitude motion, at any “check-point” of an accelerator, the
transverse motion of beam particles can be described math-
ematically by a 4-dimensional one-turn map in the form of
Taylor expansion
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where ~Z = (�x; �x; �y; �y) is the normalized phase-space
vector and�x;y are the conjugate momenta of�x;y. ~Z = 0
is the closed orbit and~uijkl are constant coefficients con-
taining all global information of nonlinearities of the sys-
tem. If the close orbit is at the center of magnets, thenth-
order terms of a one-turn map are the contributions from
the multipole components of the error fields with order up
ton. On the other hand, if the close orbit is not at the center
of magnets due to magnet misalignments or beam cross-
ing at interaction points, high-order multipole errors feed
down to low-order terms of the one-turn map and, con-
sequently,~uijkl of ordern are functions of all multipole
components. For an accelerator, since the phase-space re-
gion near the origin is of most interest, low-order terms of
a one-turn map are usually more important than high-order
terms of the map. The low-order multipole components of
error fields are therefore important to the beam dynamics.
Because of the feed-down effect, however, the high-order
multipole errors contribute also to low-order terms of the
map and become important to the beam dynamics as well.
The global correction of the nonlinearities is based on an



assumption that with a few groups of multipole correctors,
~uijkl with i + j + k + l � 2 can be minimized order-by-
order and, consequently, the nonlinearities of the system
can be substantially reduced. In order to minimize unde-
sirable~uijkl with a few parameters of the correctors, we
postulate that thenth-order undesirable nonlinearity in a
one-turn map can be characterized by the magnitude of its
nth-order undesirable coefficients which are defined by
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for n > 2, (3)

where~u0ijkl of i+ j+ k+ l = 2 denote the quadratic terms
contributed by sextupole chromaticity correctors. To min-
imize the undesirable nonlinearities, the quadratic nonlin-
earity for the chromaticity correction needs to be subtracted
from the~uijkl. For convenience, we define thenth-order
global correction when all�i with i = 2; :::; n are mini-
mized order-by-order using the multipole correctors up to
thenth order. For example, for the 2nd-order global correc-
tion �2 of quadratic terms of a one-turn map will be min-
imized by using sextupole correctors and for the 3rd-order
global correction both�2 and�3 will be minimized by us-
ing sextupole and octopole correctors. To implement the
global correction of the nonlinear fields during design and
construction of an accelerator, the one-turn map is obtained
by using the method of Lie algebra [7] or automatic differ-
entiation (differential algebra) [8] with measured magnetic
field errors. During the commission of an accelerator, the
global correction of the nonlinear fields may be further op-
timized if a one-turn map can be extracted with desired ac-
curacy directly from beam dynamics measurements. Such
a beam-based global correction needs only a measurement
of low-order map since the study showed [2] that the low-
order global correction is usually sufficient even in the case
that the high-order multipole errors are important.

To illustrate this minimization procedure, let us consider
four global correctors of thenth-order multipole for min-
imizing thenth-order nonlinear terms of the map. Con-
sider the situation that these correctors are installed at
locations where the closed orbit is at the center of the
correctors. Suppose that a one-turn map is measured at
a “check-point” between the 1st and 4th corrector. Let
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polynomial of ~Z in degreen + 1; Mi be the transfer map
between two adjacent correctors wheni = 1; 2; 3 and be-
tween the “check-point” and the adjacent correctors when
i = 0; 4; and
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whereM04 is the one-turn map of the ring without thenth-
order correctors. The one-turn map of the ring with the
nth-order correctors can be written as
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LetRi4 be the linear transfer matrix associated withMi4.
Then
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where�k+1(~Z) represents a remainder series consisting of
terms higher than thekth-order, and
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It should be noted that Eq. (7) is valid only when the closed
orbit is at the center of the correctors, otherwise, terms
lower than the(n + 1)th-order are also involved. Since
the lowest-order terms in the remainder series�n+2(~Z) are
the (n + 2)th-order, for the minimization of thenth-order
terms,�n+2(~Z) can be neglected and
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whereM04, the one-turn map without thenth-order cor-
rectors, andRi4, the linear transfer matrices, can be ei-
ther calculated based on the design lattice and the measured
field errors or directly measured from beam-dynamics ex-
periments. By using Eq. (8), thenth-order nonlinearity
of M can then be minimized by adjusting thenth-order
correctorsC(i)

n+1. It should be noted that for the beam-
based global correction, only one measurement ofM04 is
required for the minimization of�n.

3 THE TEST LATTICE

The test lattice used in this study is the LHC version 5.0.
The LHC has four interaction regions (IRs): IR1 and IR5
are high luminosity interaction points (�� = 0:5 m) and
IR2 and IR8 low luminosity points. The layout of the inner
triplets of four IRs is almost identical. Each inner triplet
comprises four superconducting high gradient quadrupoles
(MQX), Q1, Q2A, Q2B, and Q3. Due to the beam sepa-
ration and the large�max, the beam dynamics during col-
lisions is dominated by the field errors of MQX. In this
study we therefore consider only the field errors of MQX.
The random multipole components of MQX are chosen
with Gaussian distributions centered at zero and truncated
at �3�bn+1 or �3�an+1 where�bn+1 and�an+1 are the
rms value of thenth-order normal and skew multipole co-
efficient, respectively. Reference harmonics of version 2.0
is used in this study for both Fermilab and KEK MQX [1].
The uncertainty of a systematic error is simply added to
the systematic error in such a way that it maximizes the
systematic error. Due to the consideration of a larger sys-
tematicb10 in KEK quadrupoles, two different arrangement



of MQX, mixed and unmixed configuration, are studied.
In the unmixed configuration, the Fermilab MQX are in-
stalled in the triplets of IP1 and IP2, and the KEK MQX
in the triplets of IP5 and IP8. In the mixed configuration,
four MQX in each triplet are mixed with two quadrupoles
from Fermilab and another two from KEK. In this case, the
Fermilab MQX are installed at Q2A and Q2B and KEK
MQX at Q1 and Q3. Since the�max (� 4700 m) in the
triplets of IP1 and IP5 is more than 10 time larger that that
of IP2 and IP8, the field quality in the triplets of IP1 and
IP5 is far more important than that of IP2 and IP8. To com-
pensate the error fields in the triplets of IP1 and IP5, each
triplet contains three corrector packages. In this study, we
use four groups of correctors, one in each triplet of IP1 and
IP5, to minimize�n order-by-order. To test the global na-
ture of the correction, we also include four corrector pack-
ages outside the triplets to corrector the nonlinear fields in
the triplets. Each package of the corrector contains normal
and skew components of a desired multipole corrector. It
was found that in the sense of improvement of the dynamic
aperture, the correctors outside the triplets is as effective
as the correctors in the triplets for the global correction of
the field errors in the triplets [2]. In this study, the cross-
ing angle of two counter-rotating beams is taken to be 300
�rad. The fractional parts of horizontal and vertical tunes
are�x = 0:31 and�y = 0:32, respectively.

4 EFFECT OF THE GLOBAL
CORRECTION OF NONLINEAR

FIELDS

To study the effect of the global correction of nonlinear
fields, dynamic aperture (DA) of the system are calculated
before and after the correction. In order to reduce the
sensitivity of the DA to the choice of initial launch point
for tracking in phase space, we define an aperture as the
shortest distance from the origin in the four-dimensional
normalized phase space during the tracking. To find the
DA, the launch point is moved away from the origin un-
til the particle is lost. No physical aperture limit is im-
posed in the ring and a particle is defined to be lost if
x2 + y2 � (10 cm)2 wherex andy are its horizontal and
vertical coordinates, respectively. The DA defined in this
manner is found to be relatively insensitive to the choice
of launch point in phase space. Tracking of particle mo-
tions has been done without synchrotron oscillations and
momentum deviations. The DA has been calculated with
105-turn tracking. To improve the statistical significance
of the simulations, we have used 50 different samples of
random multiple components generated with different seed
numbers in a random number generator routine.

Figures 1 and 2 are the DA of 50 random samples with
or without the global correction of the nonlinear fields for
the unmixed and mixed configuration, respectively. With-
out any correction (Figs. 1a and 2a), the smallest and the
average DA of 50 samples is found to be5:5� and7:9� for
the unmixed configuration and6:5� and8:0� for the mixed

Figure 1: Dynamic aperture of fifty samples of the LHC
collision lattice with the unmixed configuration. (a) with-
out any correction for the nonlinear fields; (b) with the 3rd-
order global correction for the nonlinear fields using four
sextupole and octopole correctors. The number in each
block identifies each sample.

Figure 2: The same as in Fig. 1 but with the mixed config-
uration.

configuration, respectively, where� is the transverse beam
size. At the high luminosity IPs,� = 15:9�m. A smaller
DA for the unmixed configuration is due to a largerb10
in KEK quadrupoles. After the 3rd-order global compen-
sation with sextupole and octopole correctors outside the
triplets (Figs. 1b and 2b), the smallest and the average DA
increases to9� and10� for both configurations. It should
be noted that with the conventional (local) correction of
the field errors, high-order correctors have to be used in
order to achieve a significant improvement in the DA [9].



Figure 3: The DA after the global correction vs. the order
of the correction.n = 1 indicates the cases without the
correction. (a) The unmixed configuration. Case 12, 47,
and 44 are three worst cases without the correction. (b) The
mixed configuration. Case 9, 39, and 50 are three worst
cases without the correction.

Because of the beam separation in the triplets, high-order
multipoles of the field errors feed down to low-order terms
of the one-turn map so that they are important to the DA.
In the conventional correction, the field errors are com-
pensated locally based on the errors of each magnets and,
therefore, the high-order correctors have to be used in or-
der to reduce the effects of high-order multipoles. For the
global correction of the field errors, on the other hand, a few
sextupole correctors can minimize the dominant nonlinear
terms, quadratic and cubic terms, of the map and achieve a
significant reduction of the nonlinearity of the system.

Fig. 3 plots the DA after the global correction as a
function of the order of the correction. It shows that as
the order increases the further improvement of the DA be-
comes less pronounced, which indicates that the lower-
order (quadratic and cubic) nonlinear terms of the one-turn

Figure 4: The increase of the DA after the global correction
vs. the DA without the correction for the fifty samples of
the unmixed configuration.

map dominates the nonlinear dynamics of the system. In
Fig. 4, the percentage increase of the DA after the global
correction is plottedvs: the original DA without any cor-
rection. In general, the smaller the original DA, the larger
the increase of the DA after the correction. For example,
without any correction, two worst cases of the unmixed
configuration, case 44 and 47, have a DA smaller than6�
(see Fig. 1a). After the 2nd-order correction, the DA gains
about 50% for both cases. After the 3rd-order correction,
the DA becomes larger than9� for both cases, which is a
more than 60% gain in DA. As the original DA increases,
the gain of the DA after the global correction diminishes. It
is understandable that if the original system is already quite
linear, the correction of the nonlinear fields will not result
in a substantial improvement.

A strong nonlinearity in the lattice can lead to a substan-
tial degree of amplitude dependence of betatron tunes even
in a phase-space region near the origin, and this may re-
sult in crossings of dangerous resonances and a reduction
in the dynamic aperture. Minimizing the amplitude depen-
dence of tunes is thus desirable for a stable operation of an
accelerator. Previous studies [10, 11, 12] showed that both
the local correction for the systematic field errors and the
sorting of magnets for the random field errors are effective
in reducing the amplitude dependence of tunes. The effect
of the global correction of the nonlinear fields on the am-
plitude dependence of tunes are also studied by using the
method of normal form. In Figs. 5 and 6, the detuning
functions,��x and��y, for case 44 of the unmixed config-
uration are plotted as functions of the action variablesIx
andIy , respectively, where��x and��y are calculated at
IP1. Without any correction, both horizontal and vertical
tune strongly depend onIx andIy as shown in Figs. 5a
and 6a. Figs. 5b and 6b show the nonlinear tune shifts af-
ter the 3rd-order global correction. A comparison between



Figure 5: Amplitude dependence of tunes of case 44 of the
unmixed configuration without any correction.��x and��y
are calculated at IP1. The unit ofIx andIy is 10�8 m. At
IP1,Ix + Iy = 10�8 m corresponds to� 6�.

the uncorrected and corrected lattice shows that the global
correction effectively suppresses the nonlinear tune shift.
Other cases have a similar situation.

The improvement of linearity of the phase-space region
near the origin can also be directly examined with phase-
space plots. Figs. 7 and 8 are the phase-space plots of case
44 of the unmixed configuration before and after the global
correction, which shows that the phase-space region occu-
pied by the beams becomes much linear after the global
compensation of the field errors even in the case that only
four sextupole correctors are used. It should be noted that
the dynamic aperture calculated from the tracking of105

turns does not really tell the performance when the stor-
age time of at least several hours is in question. However,
by examining the linearity of phase space together with the
amplitude dependence of tunes, one may get a better idea
of the long-term storage performance.

It should be noted that even though the results reported in
this section are all for the working point of�x = 0:31 and
�x = 0:32, the effectiveness of the global compensation
has also been demonstrated on the LHC lattice with other
working points.

Figure 6: The same as Fig. 5 but with the 3rd-order global
correction.

5 ROBUSTNESS OF THE GLOBAL
CORRECTION OF NONLINEAR

FIELDS

The use of the global correction requires the knowledge of
a one-turn map. A one-turn map, either calculated based
on the design lattice and the measured field errors or mea-
sured directly from beam-dynamics experiments, always
contains errors or uncertainty. The sensitivity of the global
correction to the uncertainty in the map is important to the
feasibility of the global correction scheme. The uncertainty
in the map can be divided into two parts, the uncertainty
in linear transfer matrices and the uncertainty in nonlinear
terms of the map. The former is mainly due to the lack of
knowledge on the linear lattice and the latter due to both the
uncertainty of linear lattice and the errors in the multipole
measurement or the measurement errors in beam-dynamics
experiments. Previously, the global correction was found
to be not very sensitive to the uncertainty in the nonlinear
terms of the map [2]. Since the global correctors may not
be close to the sources of nonlinear fields, the uncertainty in
the linear transfer matrices, on the other hand, could make
the global correction ineffective. To investigate the effect
of the uncertainty in the linear transfer matricesRi4, we



Figure 7: Normalized phase-space plot on the horizontal
plane at IP1 for case 44 of the unmixed configuration. (a)
without any correction; (b) with the 2nd-order global cor-
rection; and (c) with the 3rd-order global correction.

Figure 8: The same as Fig. 7 but for normalized phase-
space plot on the vertical plane.



Figure 9: The DA after the 4th-order global correction vs.
the uncertainty in linear transfer matrices�1 for case 44 of
the unmixed configuration.

assume that the error of matrix elementrlk ofRi4 is

�rlk = �1frlk (9)

where�1 is the maximal percentage of errors in matrix el-
ements ofRi4 andf is a random number in [-1, 1]. Fig.
9 plots the DA after the 4th-order global correction as a
function of � for case 44 of the unmixed configuration,
which shows that uncertainty of 3% or less in linear trans-
fer matrices have little impact on the global correction, but
uncertainty of 5% or more can make the global correc-
tion ineffective. It should be noted that a measurement
of the linear transfer matrices with better then 3% uncer-
tainty is achievable when the measurement system is well
debugged. Moreover, since the global correctors can be
adjusted during operation of an accelerator, the global cor-
rection can be fine tuned when the knowledge of the linear
lattice is improved.

6 CONCLUSIONS

The global correction of magnetic field errors based on the
minimization of nonlinearities in a one-turn map is an ef-
fective means to suppress the detrimental effects of system-
atic as well as random field errors in the LHC during col-
lisions. With a few groups of multipoles correctors, non-
linear terms in a one-turn map can be minimized order-
by-order and, consequently, the nonlinearity of the system
is significantly reduced which results in an increase of the
dynamic aperture and improvement of the linearity of the
phase-space region occupied by beams. Compared with
the local corrections of the field errors, the global correc-
tion has several advantages. (a) The random field errors of
large number of magnets can be compensated with a few
groups of independent powered correctors. (b) Since the
low-order nonlinear (quadratic and cubic) terms of the map

usually dominate the beam dynamics, only low-order (sex-
tupole and octopole) correctors are needed for the global
correction even though high-order multipoles are important
to the beam dynamics due to the feed-down effect. (c) The
global correction of the nonlinear fields may be further op-
timized with a direct measurements of a one-turn map in
beam-dynamics experiments. This beam-based correction
is especially important when there is a significant uncer-
tainty in the field measurement of magnets or a significant
change of the field errors during the operation of a super-
conducting ring. While the global correction of the field
errors partially suppresses the low-order nonlinear effects
of the random and systematic errors, the local corrections
of the field errors, on the other hand, can effectively com-
pensate low-order systematic errors to a large extent. It is,
therefore, important to stress that the global correction of
the field errors should never be considered as “cure-all” in
dealing with the nonlinearity in superconducting magnets
and it should be regarded as a complement to the local cor-
rection of the field errors.

7 REFERENCES

[1] Reference harmonics for Fermilab and KEK MQX
are available on the US-LHC Project web page:
http://www/agsrhichome.bnl.gov/LHC.

[2] J. Shi, “Global Compensation of Magnetic Field Errors with
Minimization of Nonlinearities in Poincar´e Map of a Circular
Accelerator”, preprint, (1998).

[3] V. Zieman, Part. Accel.55, 419 (1996).

[4] C. Wang and J. Irwin, SLAC report SLAC-PUB-7547,
(1997).

[5] S. Peggs and C.Tang, BNL report RHIC/AP/159, (1998).

[6] R. Bartolini and F. Schmidt, Part. Accel.59, 93 (1998).

[7] A. Dragt, in Physics of High-Energy Particle Accelerators,
AIP Conf. Proc. No. 87, edited by R. A. Carriganet al., (AIP,
new York, 1982).

[8] M. Berz, Part. Accel.24, 109 (1989).

[9] J. Wei, V. Ptitsin, F. Pilat, S. Tepikian, inProceedings of the
1998 European Accelerator Conference, (1998).

[10] M. Giovannozzi, W. Scandale and F. Schmidt, CERN
SL/93-29 (AP), LHC Note 230, (1993).

[11] J. Shi and S. Ohnuma, Part. Accel.56, 227 (1997).

[12] J. Shi, Nucl. Instr. & Meth., A430, 22 (1999).


