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Abstract 2 HAMILTONIAN

For hadron storage rings like the Relativistic Heavy lofdnder the assumption that the effect of the longitudinal
Collider (RHIC) and the Large Hadron Collider (LHC), themagnetic field is !n5|gn|f|(':ant' [7], and that the tran;verse
machine performance at collision is usually limited by thémplitude of particle motion is small compared with the
field quality of the interaction region (IR) magnets. A ro-8verage bending radius, the magnetic field in a magnet can
bust local correction for the IR region is valuable in im-P& expressed in terms of a 2-dimensional multipole expan-
proving the dynamic aperture with practically achievablé&!On

magnet field quality. We present in this paper the action- 0o

angle kick minimization principle on which the local IR By +iB, = By Z(b" +ian)(x + iy)" ! 1)
correction for both RHIC and the LHC are based. n=1

wherez and y indicate the horizontal and vertical direc-
tions, respectivelyB; is the nominal bending field, and
n = 1 is dipole term;n = 2 is quadrupole term, etc. The
Hamiltonian of the charged particle withas the indepen-

"Yent variable is approximately [8]

1 INTRODUCTION

For hadron storage rings like the Relativistic Heavy lo
Collider (RHIC) [1] and the Large Hadron Collider (LHC)
[2], the beam size is the largest near the interaction region eA, 1, ., )

(IR) triplets during lows* operation. Furthermore, beam- H(z,pe,y, py; s) = — o p + 5 (2 +py) (@)
beam effects often require a finite crossing angle, resulting

in significant closed orbit deviation from the magnet cenwherep is the local radius of curvaturd, is given by
ters. Machine performance at collision energy, measured in

terms of the dynamic aperture, thus depends on achieving B=VxA, (3)
the highest possible magnetic field quality and alignment

accuracy in the IR magnets. with

Magnetic multipole correctors located in the IR region T
provide active means to compensate the impact of the IRls = (A-s) (1 + ;)

magnetic errors. For hadron machines like RHIC and the - oo

LHC, the betatron phase advance across each IR triplet = - (1 + —) By Z (tmn + €mn)2™yY"
is negligible, and the betatron phase advance between the p m,n=0;m+n>0

two IR triplet aroundeach Interaction Point (IP) is near o ) (4)
180°. With these well-defined phase relations, IR-by-IRVhere the coefficients,,,, are given by

local correction can be effective and robust.

_ n/Zb
In this paper, we discuss the principle of action-angle 1 m+n (=) "bmen, neven
kick minimization for IR local correction. Based on this ™"~ m 4 n n 1)/
S . . . (—)( +1)/ m+4n nodd
principle, we have designed and implemented multi-layer )

multipole corrector packages in the RHIC IR region [3]In Eq. 5, the coefficients,,,, are deduced from the recur-
correcting multipole errors up to the 12th-pole order. Simi-.ve equ,ation ] "

lar correction schemes have been proposed for the LHC Iﬂ

regions [4, 5, 6]. In Section 2, we review the Hamiltonian (,,, | 2 (m+ 1)p%emizn + (n+ 2)(n + 1)p2em o
describing the particle motion under the magnetic multi- ’ ’

pole environment. In Section 3, we discuss the figures ofy (,, 1 1)(2m + 1)pept1n + 2(n + 2)(n + 1) pem—1.nto
merit for global and local error compensation. Discussions ’ ’

and summaries are given in Section 4. +(m A+ 1) (m = Demn + (0 +2) (0 + Dem—2 npo

*Work performed under the auspices of the US Department of Energy— —(m + 1)Pcm+1,n - (m - 1)Cmn
t Email: weil@bnl.gov (6)



with initial conditions Beo be

= E + b A, — a7Ay
ein = €gp = 0. (7) Bs1 = —as —6(arAy + brAy)
. . . . By = —15Bso
We introduce a canonical transformation using the generat- (14)
ing function B3z = —20Bs5
Boy = 15Bsg
Fz(x’pfﬂ’y’pyﬂ) = (x_Dx(S_xc)—i—(y_Dy(s_yC)a (8) _
Bis = Bs
whered = Ap/po, poc = Bopo is the rigidity of the Bos = —Bso
beam, ang is the nominal bending radius. The disper-
sion functionsD, and D,, and the closed-orbit displace-
mentsz. andy. are determined by eliminating the terms
in the Hamiltonian that are linear in; andys. The new
Hamiltonian is expressed in terms of the betatron displace- _ br
ments % and y; as Bro = o +bsAs —asdy
H B61 = —a7 — 7ClgAx - 7b8Ay
(xﬁapl'ﬂ’ Y6, Pys> 5) Bsy = —=21By
1, , 5 1 - bl) 5 - 2] Bys = —5Bg (15)
= — | { b+ — —b
9 (px@ -HUy@) + 20 |:< 2+ P Zg 2Y3 Bsy = 35B7g
1 , , Bys = 3Ba
—I-p—o (Baowh + Buizgys + Boayi+ Bis = —TBr
3 2 2 3 BO7 - _B61/7
+Bsox} + Ba1xjys + Biaxsys + Bosys + ) (9)
Retaining terms that are linear in the closed orbit displace-
mentsA, = D.d+z. andA, = D,d+y., the coefficients
B;; are given by [9 b
! 9 vl Bgy = gs + by —agAy
1
By = —5 (Abz — bzé) — b3, + ClgAy By = —ag —8agA, — 8b9Ay
By = —ay—2(azA; +b3Ay) (10) Bsz = —28Bsp
Bay = —Bus+ o (Aby — bo o = —1hn
20 = —Boa+ Qp( 1 — b16) Ba = T0Bso (16)
bs Bss = TBn
B3y = ? +bsAy — a4Ay Bys = —28Bg
le = —3&3 - 3G4Ax - 3[)4Ay (11) Bl7 = —B71
Bis = —=3Bjo Bos = Bgo
Bos = —DBa/3
b
By = f + b5 Ay — asAy
Bz = —as—4(asAy + b5Ay) by
B = — +bigA; —agA
Byy = —6Buo (12) 90 9 =+ b1 a108y
Bis = —Bs; Bs1 = —ag —9a10A; — 910y
Bos = By B7s = =368y
be Bss = —28Bsi/3
Bso = g +bs Ay — a6Ay Bsy = 126Bgg (17)
B41 = —ay — 5G6Ax — 5b6Ay B45 = 14381
Bgz = —10350 (13) BS6 — _84390
Bys = —2Bgp By = —4Bg;
By = —5DBs5 Big = 9By

Bys = Bau/b Byy = Bs1/9



blO

difficult to implement during machine operation. Local IR-
by-IR compensation employing multi-layer multipole cor-
rectors located in the corresponding IR quadrupole triplet
region can provide effective correction.

Bigo = To +011Ar —andy

Bgy = —ajo— 10a11A, — 106114
Bgs = —45Bio,0

Brs = —12By;

Bgy = 210Bjo,0

Bss = 126Bo1/5 (18)
By = —210Bjo,0

Bz = —12Bg;

Bsg = 45Byo,0

By = Bg

Boio = —Biopo

3.1 Tune spread

. _ Thetune spread is usually defined as the spread of the tune
where Ab, and Ab, are the deviation from the design ghjft of particles with various betatron amplitudes and mo-
dipole b, and quadrupolé; fields. Regarding the mul- mentym deviation. To the first order of the multipole er-
tipole errors as a perturbation, the Hamiltonian given byqrs the tune shifts can be obtained by [9] averaging the
Eq. 9 can be further rewritten in terms of the action-angl@me derivatives ofs,, and ¢, while keeping only thely,

variables(¢.., J.., ¢y, J,) as

Yi JZ - 7 im
H(pw, Jo, 6y, Jy) = D~ Y Appeeemos

term from the expansion,

. ds 8H . ﬁ@Aoo
%—¢zwz*”w#%%&@ (23)

(20) wherez =z, y, the sign( ) denotes average over the phase

variable, and the integral is performed over the circumfer-

ence of the closed orbit. Retaining multipole terms up to

. Ry
1=,y l,m=—o00
(19)
using the relations
2J, .

2 =+/2J.3,cosx, p.=— 3 (sin x, + @, cos xz)
wherez = z,y, and

Vy08 fds' Ny *ds

=TT T w )

The action/, can be written as

J:

[22 + (azz + ﬁzpz)z] . (22)

Here,v,o andv,, are the unperturbed tunesy Ry is the
ring circumferenceq, , and g, , are the Courant-Snyder
lattice functions, andl,,,, represents the error terms which
can be deduced from Eqg. 9.

3 FIGURES OF MERIT

Conventionally, spread of betatron tunes has been used to
guide the design of storage rings. Minimization of the tune
spread is often used for global error compensation. Since
skew multipoles and odd, normal multipoles do not con-
tribute to the linear tune shift, an extension of such global
method is the minimization of nonlinear components of the
one-turn map.

The global compensation approaches are valuable for
resonance correction as well as dynamic aperture improve-
ment. However, in the case that dominant errors are lo-
calized in specific places like the interaction region, global
multipole compensation is less robust and often practically

" 25, "

1) 11th order ¢ = 11) and closed orbit termsy,, A,) to the
first order, the linear horizontal tune shift is

- d Ab b1d
55{__1+;__%
27 po

2p 2p
+3016x Jx - 6016yt]y

15 45
+5 CaB3 7 = 45C e By Ty + = Caly

35
+5 Cafp 7 = 2100323, J2.Jy

+315Cs 5. B; Jo J; — T0Cs35 T3

315 1575

+5Cabedy — ——CaB2By 2y
4725

+— CufaBrJiJy — 1575C 3. 55 Jo I
1575 , 44

(24)



The linear vertical tune shift is

Brds
vy = f 27Tp0 {CO + 301ﬁyjy — GClﬁxe

15 45
_7@@ﬁ+%@@@%@—7@ﬁﬁ
—|—§C B3J3 —210C3628, J2J.

2 3 yy 3 yMedyJde

+315C58, 2], J% — T0Cs32J3

315 1575
—S5CaBy g + =5 CaB B Iy )
4725
- Cuf 32T, T2 + 1575CaB, 35 1, J3
1
5}
(25)
where the coefficients are
Abs — byd
Cy = % + b3A, — ClgAy
by
ch = Z + bsAy — GSAy
be
cy, = E + b7 Ay — a7Ay (26)
bg
C3 = g + boAy — a9Ay
Cy = bﬂ + 011z — a1y
10 ¢ v

3.2 Action-angle kick

The figures of merit for local minimization are the action-

high-5 region, corrector packages containing multi-layer
corrector elements of various multipole content are used.
For each mliipole orderc,, (eithera,, orb, ), (a minimum

of) two correction elements are implemented for every IR,
each located at symmetric locationsand the IP. Due to
the anti-symmetry of the IR optics, one of the two elements
is near the maximuni,. location, and the other is near the
maximumg, location, resulting in an effective compensa-
tion. The strengths of these correction elements are deter-
mined by minimizing the two quantities

/dsC’z cn—i—(—)"/dsC'z Cn, Z=2,y (29)
L R

taking advantage of the negligible betatron phase advance
within each triplet, and approximate 18Phase advance
between the triplets. The integral is over the entire left-
hand-side (L) or right-hand-side (R) triplet. In general, the
weightsC’, in Eg. 29 are chosen according to theltiu
poles as:

Q/Z for b,
Cp = (30)
ﬁén_l)/zﬁ;/z for a,
and
65/2 for even b,, or odd a,,
Cy = (31)

ﬁ;/zﬁg(/n_l)/z for odd b,, or even a,,

4 DISCUSSIONS AND SUMMARY

Compared with the tune shift, the action (and angle) kick
has similar dependence on the lattice opticsfor each
multipole. Consequently, minimization of action-angle
kicks results in a reduction of tune spread and an improve-
ment of the dynamic aperture. The compensation scheme
is usually not sensitive to the change®f, as long as?*

is low at the IP (usually the only relevant case) so that

angle kicks produced by the IR magnets at each Spe‘:iﬁ%ddistances from the IP satisfies the relatiohd* = s2.

multipole order. The action kicks can be expressed as

oH = .
AJy, = — dsa% :—l Z AN T
RS (27)
H
AJ, = - as 9L _ _ > imAdi,
8¢y . m=—o00
where
s dS/ s dS/
Adi, ~ /ds Ay exp (zl/ —) exp (zm/ —) .
0] ﬁx 0] 6@/

(28)

In the case of two beams sharing the same IR magnets,
the compensation is equally effective for both intersecting
beams, since the optics of the interaction region is anti-
symmetric. Although closed-orbit deviation (e.g. due to
finite crossing angle) is not taken into account, the correc-
tion is usually effective since the effect of the magnet feed-
down is partially compensated by the feed-down from the
correctors.

The most straightforward approach for local correction
on multipoles ofn = 3 and higher order is the dead-
reckoning method, setting the corrector strerggtbording
to Eqg. 29 using bench-measured magnetic multipole errors.

The correction scheme is simplified by the fact that the adJdp to 10% of measurement errors and quench/thermal cy-
tion is approximately a constant of motion at the time scalele dependent multipole variations can usually be tolerated
of the revolution period, and that the relative betatron phag8, 5, 6]. The method is also immune to moderate closed-
is well defined within the high# IR region. Minimization orbit errors and corrector misalignments [6].

is performed on every significant multipole eréqr(or a,,).

Multipole errors of order. = 1,2 produce closed orbit

Since the available physical space is usually limited in theeviation, tune perturbation, and coupling. The effects are



usually compensated using beam-based tuning. In the case
that skew quadrupole components and quadrupole mis-
alignment of the IR triplets is significant, local decoupling
utilizing the a- corrector in the IR can be effective [10].
The corrector strength obtained from the local decoupling
scheme is similar to those given by Eq. 29. Beam-based
corrections for higher order multipoles have also been pur-
sued by several authors recently [11, 12].

5 REFERENCES

[1] Relativistic Heavy lon Collider Design &mual Brookhaven
National Laboratory (1998).

[2] The LHC Conceptual Design ReportCERN/AC/95-
05(LHC), CERN (1995).

[3] J. Wei, Error Compensation in Insertion-Region Magnets
Particle Accelerator§y5 439-448 (1996).

[4] J. Wei, V. Ptitsin, F. Pilat, S. Tepikian, N. Gelfand, W. Wan, J.
Holt, US-LHC IR Magnet Error Analysis and Compensation
European Particle Accelerator Conference, Stockholm, (June
1998) p. 380.

[5] J. Wei, W. Fischer, V. Ptitsin, R. Ostojic, J. Strditterac-
tion Region Local Correction for the Large Hadron Colliger
Proceedings of Particle Accelerator Conference, New York
(1999) p. 2921.

[6] W. Fischer, V. Ptitsin, J. Wei, R. Ostojic, J. StrditiC Inter-
action Region Correction Scheme Stugthsse proceedings.

[7] J. Wei, R.TalmanTheorem on Magnet Fringe FigléParticle
Acceleratorsys 339—-344 (1996).

[8] L.Micheloti, Introduction to the Nonlinear Dynamics Arising
from Magnetic Miltipoles, AIP Conference Proceedin53
(1985) p. 236.

[9] J.Wei, M. HarrisonTune Spread due to Magnetic Kpoles
in RHIC, Proc. XVth International Conference on High En-
ergy Accelerators, Hamburg, Germany, 1031-1033 (1992).

[10] F. Pilat, S. Tepikian, D. Trbojevic, J. WeiThe Effect
and Correction of Coupling Generated by the RHIC Triplet
Quadrupole$roc. 1995 Particle Accelerator Conference and
International Conference on High-Energy Accelerators, Dal-
las, Texas (May 1995) 2832 - 2834.

[11] C. Wang, J. Irwin and Y.T. YanComputation of nonlinear
one turn maps from measurement with model independent
analysis Talk given at IEEE Particle Accelerator Conference
(PAC 99), New York, NY, 29 Mar - 2 Apr 1999.

[12] J. Shi,Global Correction of Magnetic Field Errors in LHC
Interaction Regionghese proceedings.



