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The Projection Approach to Solenoid Compensation

5. Peggs

Abstract

A general method for analysing solenoid compensation schemes is developed,
which projects the effect of each coupling magnet, i.e. a solenoid or a rotated
quadrupole, onto a common reference point. This leads to a perturbative method
of solution of the exact decoupling conditions.

First order decoupling solutions are demonstrated for local solenaid,
local skew guadrupole, and remote sclenoid compensation. The merits of five
different schemes are compared.

Theoretical and experimental evidence is presented showing how a two
skew guadrupole pair scheme can interfere destructively with the beam-beam
interaction. The exact compensation of the CLEG solenoid in CESR, using three
pairs of skew guadrupoles, is described.

Dispersion coupling is analysed in general. Vertical dispersion is shown
to disappear outside any 'straight line' compensation scheme, and a proposal
For a vertical emittance knob at CESR is cutlined.



1. Introduction

Most storage rings, whether built or planned, incorporate at least one
longitudinal magnetic field at the centre of an experimental detector. Un-
compensated solenoid fields at the intersection points couple the horizontal
and vertical betatron oscillations, dispersions, and emittances. This makes
a machine less dynamically stable, and lowers the peak luminosity attainable.

A variety of compensation schemes exist which have been used, or are
planned to be used, in order to decouple the equations of motion. The simplest
scheme, in use or once used at SPEAR, PEP and CESR, places a half strength
anti-solenoid on either side of the experimental sclenoid, before the first
quacdrupole. PETRA reaches satisfactory, but incomplete, compensation by optimum
choice of the relative polarities of three experimental solenoidsl. LEP
designsz’ and the present CESR mini beta configuration®:2>6 compensate with
two or three pairs of rotated quadrupoles. :

The projection approsch’/ was originally used to design a compensatiaon
scheme for the superconducting CLEQ solencid which would place the minimum
number of constraints on the intersection region geometry of CESR. Elimina-
tion of the proposed superconducting anti-solenoids meant that the first quadru-
pole Q1 could be moved a lot closer to the intersection point, lowering the
vertical beta B * at the IP, and raising the luminosity.

However, projection methods are generally applicable to the quaptitive
analysis of any weak or intermediate strength coupling system in a lattice.
Its simple-and powerful perspectives complement the other treatments already
availabled=

2. Coupler Project

The general decoupling problem in a storage ring is represented symbolic-
ally in Figure 1. A segment of the lattice, AB, contains the n couplers of
interest and a reference point C. Entrance and exit planes of the coupling
magnets are labelled 1 through 2n. The insertion as a wheole does not couple
horizontal (x-x') and vertical (z-z') motion if the four by four transfer
matrix across it, TBA’ is block diagonal in form.

When all the coupling fields are turned off, the linear motion from any
paint i to any point j is represented by the block diagonal matrix M... Motion
across the k'th coupler is given by NZk’?k—l‘ Sag, the imsertion is %iactly
decoupled if -

TXBA; 0 fl)
= "‘—"-"“"' = -..m...‘. '
Tan l M on Yon,2n-1 Mone1,20-27 000 I,a :

0 i TzBA

that is, if eight simultaneous equations containing the n coupler strengths
kl,...kn are satisfied. It will be shown later that, in the cases of interest,
only four of these eguations are independent.
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This description is simplified if the i'th coupler is represented by
its prcjection matrix, Pj, where

Py = Mo 25 Mo1,2i-1 Moi-1c (2)
because, upon subsitution into 1),
Toa ™ Mac P Fofp) Mea (3)
so that the exact decoupling conditions become
IR »
to ; Pz n 21

The projection matrix P{ depends only on the Lype of coupler represented,

on its strength ki, on the clogsn reforunce ooint £, und on the gtate of the
intervening non-coupling lattice. It does not depend on the state or location
of any other coupler.

This representation is powerful because, in practice, Pj is often very
close to the identity matrix, and can be expanded as a polynomial in ki

2
= 1 - a =
Pi I+ ki Ki + &i (5Y

Here ¥; is a block anti-diagonal matrix. Putting 5) into 4), the general
First order decoupling conditions are simply

n

>k, K, =0 (6)
¢ 1 1

i=1

Once the K matrices have heen found for couplers in genmeral configurations
of interest, 6) is readily solved.

The state of the world outside the insertion really only enters this
analysis through the implicit assumption that the rest of the lattice is de-
coupled. Vhile the K matrices will shortly be conveniently written in terms
of Twiss parameters and phases, which are global concepts, in fact they only
depend on non-coupling magnet strengths inside the insertion, for a given
geometry. In a local insertion the magnet strengths can, in principle, remain
fixed during drastic global lattice changes, while in practice they change
very little. It should be emphasized here that any local decoupling scheme
is essentially independent of the injection/luminosity status of a storage
ring, and of the fractional betatron tunes.
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2.1 Solenoids
The exact linear matrix, N S’ representing a solenocid of length 1, field
B, with cylindrically symmetric Sthin fringe fields, can be written asia

N, = F(%,8%) R(8) (7)

All the coupling terms are contained in the matrix R(8), which represents

the rotation of transverse co-ordinates about a longitudinal axis. The angle
of rotation, 8, is usually small. For example, using typical values from

the CLED solenoid

- _BL - 1x3
2(Bp) T 2x5x3.34

0.1 << 1 (8)

F(1,8%) is an uncoupled matrix which only differs from the drift matrix,
L{4), by a second order focussing effect, identical in both transverse planes.
Since R must commute with the matrix representing any cylindrically symmetric
element,

(L,R] = [F,R] = 0 (9)

But what is the matrix K ? If M is the uncoupled matrix from C to the
entrance plane of the solenoid, then

Ps = 1 #8K + 8% ... = nl -1 Fru (10}

so that, using first order approximations for F and R,

K ={-a=-ba (ll)

where

|
5= MzlM (12)

TR IR ]




The adjoint {f) transformation of a two by two matrix merely involves
reordering the matrix slements

c d -c a (13)

so that, since S has a unit determinant,

+

5" = 51 2 M-l My (14)
An expressicn will soon be found for Xq, for skew quadrupoles, which

is identical to 11) with S replaced by Q, where @ is a singular matrix.

2.1.1 Solengids a Drift Away From C

An experimental solenoid centered at C, or an anti-solenoid only a
drift away, has the simple K matrix

K =
s (1%}
For a collection of such magnets, as in the simplest compensation scheme,
the eight first order decoupling conditions 6) become one condition

Z6 =0 (16}

which is also the exact condition.

2.2 Thin Skew Quadrupocles

A quadrupole, length & and gradient g, which has been rotated about the
beam axis by an angle ¥ away from midplane symmetry, is represented by the
coupling transfer matrix

Ngl 2,g) = R(=9) Ng(0,2,9) R(Y) (17)



Here NQ(O,Q,Q) is an uncoupled matrix which does not commute with R.

INg,RL £ 0 (18)

Any rotated guadrupole field can be decomposed into a superposition of
a regular guadrupole (¥ = 0) and a 'skew' quadrupale (¥ = 45°). For the present
i1t is convenient to concentrate on thin skew guadrupoles, but later on it
will be shown how to deal with thick magnets in a real situation.

A thin skew gquadrupole has the coupling matrix

- -

1 0 ; c 0
¢ 1 E /fF 0
Nys = : (19)
a o : 1 0
/F0 + 0 1

and has an exact projection matrix
= = y=1
PQ =1 +q KQ = MTEN, o M (207

Naw, defining the dimensionless strength of a skew quadrupole as

%
q - (SXBZ) (21)

then,

o | A
“q = | === (22)
i
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where, in terms of Twiss parameters at C and at the skew quadrupole

8"\ ,
% k. %%
=S C == -5 8 (8787
1 » 0 0 X Z Sz x z X Z
Q:.——-——-—TM‘{- 1 0O Mz= (23)
(B B )i ‘ cc e N\
%z X Z cs z
« % x z\B *
ak
| (B8 i

Trigonometric functions of the petatron phases g , with origins at c, are
written as

S, = sin(2,) c, = cos(¢z) (24)

Comparing the expressions for Kg and K~, 11) and 22), the first order
decoupling conditions 6}, for a set of solenoids and skew quadrupoles, have
naw become the four independent simul taneous equations

2o LG (25)

It appears that, in general, only four couplers are needed to compensate
for an experimental solenoid.

3. A First Logk at Local Compensation Schemes

Luminosity conditions in an experiment are improved when the intersection
region quadrupocles are moved as close as possible to the intersection point.
How can compensation be achieved when the immediate anti-solenoids are moved
or removed?

3.1 Straight Line anti-Solencids

One intuitively promising scheme rotates each thick quadrupole on the
east (west) of .2 solenoid of strength 6 by an angle + 8 (-£). Anti-solenoids
of strength - S are then placed at convenient 1ocatioéz'in %ne east and the
west , decouplifig the lattice to all orders of 8.

This conjecture 1S easily proven, in the absence of bends between the
anti-solencids, if the matrix Tga ig written down in terms of its component
matrices. When the forms 7) and 17) are used to represent solenoids and ro-
tated guadrupoles, the only coupled matrices present are R matrices. These

can all be snnihilated by virtue of the commutation relations 9). This procedure
does not work 1in the presence of a bend Decause 7 does not commule with the
linear dipole matrix.



However, there are practical disadvantages to this compensation scheme.
If the experimental field (or energy) is a variable, each individual quadru-
pole must either rotate mechanically, or, in an approximate scheme, have an
attendunt skew guadrupole. This becomes unnecessarily complicated if the
anti-solenoid is separated from the IP by two or more quadrupoles. Why not
Jjust use four skew quadrupcles, and get rid of the anti-solenoids?

Skew quadrupcles have the great advantage of being much shorter than
their eguivalent sclenoids, because a skew field of gradient B/r is B/r times
stronger in its coupling effect than a longitudinal field 8. This makes them
very attractive in the congested lattice geometries near collision pecints.

3.2 Loegal Skew Quadrupole Schemes

Compensation of an experimental solenoid is achieved to first order by
n thin skew quadrupoles when, according to 15) and 25),

0 n
8 + Z q. Q_ = ()
1/ =1 - 1 (26)

Most machine lattices are symmetric about an intersection point, so that
two points at equal distances on either side of C bear the relationship

B(~s} = B(s) g(-8) = ~A{s) (27

This makes the matrix elements of the general Q matrix, given in 23), even
or odd functions of s, according to

odd{s) even(s)
Q= ) (28)

even(s) odd(s)

Hence two of the decoupling conditions in 26) are automatically satisfied
if symmetrically placed skew gquadrupole pairs are excited antisymmetrically

ag{-s) = —g{s) (29)



leaving two conditions

10 (30)
9 + 2 :E:qi . =0
0 1 i B *\}
s>0 0 stz Y
X

Only two pairs of skew quadrupoles are necessary to solve these equations.
Unfortunately, two skew pair schemes interfere with the beam-beam effect,
in a way that straight line anti-solenoid schemes do not. In general it is
necessary to use three skew guadrupole pairs. These statements will be expanded
shortly, when the subject is rejoined after a discussion of the PETRA compen-
sation scheme.

4, Remote Solenoid Compensation

Consider a storage ring with 2n+l experimental solencids, with n placed
on either side of C at identical intersection points, separated in phase from
each other by @y* and A *. How must the fields of these solenoids be arranged
to decouple the motion across them all? This question is important for PETRA
where the minimum emittance coupling ratio « =533, is found
empirically by varying the polarities, but notsghe strengths, of three experi-
mental solenoids.

The S matrix at the i'th intersection point is given explicitly by

g *
*
cc+ss X csg -csg’”
-1 xz xz§, X 2z z zZ XX
S, =M M = (31)
1 X oz
c,5, C.S, g *
- z
B * g % Csz+Ssz B *
X Zz _ ¥

sin{ig, *) etc.

bé'n
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After putting this into 25}, and using scme trigonometrical identities which
intreduce the sum and difference phases

®
g = Qx + ﬁz > & = ¢x - ﬁz (32)

2 .8in a*
E % (i )=o (33)

Two of these conditions are automatically satisfied if the solenoid
strengths, €; , are purely symmetric or antisymmetric. If the solenoid at
C is active, the solution cannot be antisymmetric.

Remote solenoid compensation schemes are explicitly sensitive to changes
in betatron tune. This means, for example, that explorations of the tune ‘
plane at PETRA are restricted by the reguirement of satisfactory compensation.

Finally, even if a lattice is exactly decoupled, there will always be vertical
emittance growth in the major parts of the ring where the one turn matrix
is not block diagonal.

5. Skew Quadrupoles and the Beam-Beam Effect

Peak luminosity conditions in electron storage rings are reached by making
the vertical collision size of the beams as small as possible, and by colliding
the largest currents aliowed by the beam-beam interaction. Both of these
limits are disrupted, in general, by the skew guadrupoles of a two pair compen-
sation scheme.

When the beam-beam interaction is negliigible, at a small current I, the
vertical beam size has a contribution due to skew guadrupcles which will be
represented by a pseudo-coupling comstant X. That is, for small I,

*
W
R

rN

%
o, =8 €. (x+x) Ky ¥ <<1 (34)

so even the low current luminosities are reduced. There is a negligible change
in the horizontal size.
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At high currents the situation gets even worse, because the beam-beam
equations of motion are destructively modified by the presence of skew guadru-
poles. There is more beam-beam blow-up, and the maximum stable current is
reduced.

These problems would all disappear if the one turn matrix at C itself
was block diagonalised, that is if the sets of couplers on the west and east
of C were independently balanced. This would require four pairs of skew
quadrupoles. In fact three pairs are sufficient to free the collision performance
of a storage ring from the compensation scheme.

These comments will now be justified, at first theoretically, and then
experimentally.

5.1 Theory

A useful 'normalised' system of coordinates (capitals) at the crossing
point is related to the 'physical' system (lower case) by

X ~ z
nc P -
(B =) (8,%

5 #\ L
X'= ¢’ f§f 7! = zl ﬁi_ : (353
X = K_|5 =
X x

In the flat beam limit, <<<1, a statistically typical unperturbed particle
rotates around unit radius circles in horizontal and vertical normalised phase
space planes. It advances by an angle 27} between each crossing.

The beam-beam impulse is also conceptually simple in the normalised system,
namely

AX' = - 47 Y () szt = - 4mE 2, 2) (36)

Here f and g are positive form facters, even functions of X and Z, which drop
below one for finite amplitude particles. Beem-beam instability in either
plane occurs, very roughly speaking, when 47E is comparable to 1, because
then the angular kick a typical particle receives is comparable to its ampli-
tude.

tilhen a balanced set of couplers is turned on, a particular trajectory
coming into the insertion will be distorted, acquiring new coordinates at
the IP which will be denoted by a subscript C{e.g. Xz, xc)- The old coordin-
ates are still useful, however, because they label the exterior trajectories,
which the compensation scheme does not disturb. The true stability of a tra-
jectory is determinmed by writing .the coupled beam-beem impulse in terms of
uncoupled natural coordinates. .
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The linear relationship between coupled and uncoupled physical coordin-
ates, for a decoupling scheme with n-1 pairs of skew quadrupoles, is simply

S —
b =P = cees
tc W * PW P*lP—Z P*n
XT x!
I
(37)
z z
c
zl zf
c

This is illustrated in figure 2. It is conceptually convenient, here, to
break the experimental solenoid into two halves, with egual and opposite
fringe fields an infinitesimal distance on either side of the collision point.
This does not affect any of the physical conclusions of this discussion.

If motion across the whole insert has been properly decoupled, then PW
is generally parameterized, to first crder, by

[ B L]
Z
1 0 0 x*(B.8)
po=|o 1 b
L L
0 x*(BBHT 1 0 (38)
b 0 0 1

where X is the pseudo coupling constant intreduced in 34), and where

= EE: q sin(¢x) sin(¢z) (39)

WEST

Since the matrix elements Rr13 and Pyaq are identically zero, the beam ribban
at the IP in a successful compensation scheme is not tilted.

The matrix elements b essentially measure the screw pitch of the beam
ribbon. Because b does not affect the size of the beam, and does not appear
below in the modified beam-beam equations, it may be ignored. A fourth skew
quadrupole pair is not necesssary.

In the case of interest the effect of the skew guads is strong, but the
beams remain flat. That is,

21y < (40)

so that the coupled and uncoupled natural displacements are related by




- 13 -

>
I
¥
™
i
P
AP
\_ﬁ\_
4

(41)

The beams are blown up vertically but not affected horizontally, so the beam-
beam impulse, in a mixture of coupled and uncoupled coordinates, becomes

AX’C = - 4ngxxg(x) AZ; ) (42}

In consistent natural uncoupled coardinates, the beam-beam impulse becomes

IX' = - 47E Xg(X) VARER
A = 0 - (XY ur
X = 6z = -:2) 7E, Xg (X)

When such a coupling scheme is turned on, the exterior world sees no change
in the horizontal motion of a typical particle, but sees enormous vertlucal
beam-beam kicks, which are upporent digploecomenis.

Skew quadrupoles interfere dangerously with the beam-beam effect, unless
care is taken to ensure that X is much smaller than X. Ideally,

4
¥i = :E: -q sin () sin (¢,) =0 (a4)

s >0

5.2. Experimental Results at CESRH

A local two skew pair compensation scheme was tested at CESR in April
1981, with a constant field of 0.4 Tesla in the CLEQC solenoid.lS Observations
were made with the skew strengths at various fractions of their theoretical
degoupling solution. Their strengths were conveniently parameterized by
xl’ 3 which was 0.18 for full compensation, a value comparable or larger than
<

Single beam measurements of the vertical dispersign 7, around CESR gave
quantitative confirmation that the theoretical decoupling strengths were cor-
rect. Coupled vertical dispersion waves outside a straight line compensation
scheme in a lattice with Finitené* only disappear when the inserticn is pro-
perly decoupled.

Colliding beam measurements of the specific luminosity I"-'z as a function
of skew strength xl/z are shown in figure 3, as they were taken for three
different beam currents.
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In the low current case, 1 = 2.7 mA, the beam-beam interaction was neg-
ligible, and the specific luminosity depended on ¥ and X through }he vertical
size gy as given in 314)., When the skew ?uadrupoles were off, Xl 2 - g, the
substantial lattice cougling made both «1/2 and o5 large. Near the decoupled
setting, x}/2 = g.18, ¥ /2 4as a minimum, but xl 2 "was large enough to dominate
the vertical size.

At the intermediate current, 1 = 5.4 mA, the average specific luminosity
was less and the optimum skew strength decreased, lowering the curve and moving
it leftward. The beam-beam effect was being felt, and was having most effect
at large X 2 yalues, in qualitative agreement with theary.

With currents approaching the usual beam-beam limit in CESR, I = 12.0 mA,
it was impossible to turn the skew guadrupoles up to more than half their
decoupling strengths.

5.3 Conclusions

1f an experimental solenoid is strong enough to need compensation, that
is, if

2
¥ o~ 9 02« (45)

then a two skew quadrupele pair scheme will only be satisfactory if judicious
phase locations are available, and can be maintained. In the present LEP
scheme, with skew quads five and seven regular quads away from an P, there
is not enough phase stability to compensate in both 60° and 90° lattices.

An experimental solencid usually needs three pairs of skew quadrupoles for
successful compensation.

6. Compensation at CESR with Three Skew Quadrupcle Pairs

In September 1981 CESR resumed operation with a mini-beta geometry at
both crossing points, and with a 1.5 Tesla superconducting solenoid in the
CLEQ experiment. Figure 4 shows the crowded geometry of the lattice elements
between the south IP and the first soft dipole. Quadrupole Q1 is mounted
on rails and slides back along the vacuum chamber, allowing rapid experi-
mental access, but denying the only possible location for a local anti-solenoid.

Projection technigues were incorporated in a computer program, SKEW,
to design the three skew pair compensation scheme which best fits the practical
constraints ,6, Now used regularly in an operational mode, SKEW determines
the exact decoupling strengths of real couplers in a given lattice, and cal-
culates, for example, the second order tune shifts and the dispersion perturb-
ations.
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6.1 Finding the Exact Decoupling Scolution with SKEW

On a first pass SKEW assumes that all skew quadrupoles are thin, and
finds a decoupling solution only to first order in& . Then, however, it cal-
culates an error vector p using exact transfer matrices for the solenoid and
for the thick skew gquadrupoles, and approoches the exact solution iteratively.

Twe or three iterations are usually sufficient to reduce the apparent residual
field in CLED %to less thanm one gauss.

The components of the error vector
p = Pl
)

P

(46)
3

are just the coupling matrix elements of the exact projection matrix PE which
must be reduced to zero.

1

i

j

: : 47
E “Py Py, (47)
?.

b -p
L L

Here P, and P, differ from unit matrices by second order (52) terms which
represent, for example, the focussing effect of the solenoid.

Two more vectors are necessary for a compact iterative algorithﬁ. The
implicitly antisymmetrical excitation of the skew quads is written as

(48)

ax \ 2 (49)
:‘)’z
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Now, defining the influence matrix A as

A= [al: az’ 33’} (SD)
then, using 15}, 23) and 39), the error vector to first order and with thin
lenses is

1
- _,= .0
P = Aq ¢+ "2"{ é (51)

so that the first order decoupling solution is just

-

1 (52)

Iteration is straightforward with this notation. IF ;'is calculated
exactly using an old set of excitations do1ds @ better set will be

- .- _ -l -

6.2 Skew Quadrupoles Locations

Soon it will be shown that only skew guadrupocles beyond the first soft
bend, B1l, couple horizontal dispersion into vertical dispersion. Unfortun-
ately for CESR the vector a is almost constant between Q1 and Bl, leading
to unreasonably large excitations unless one skew quad is outside Bl. The
strength of the third skew quad and its dispersion coupling effect are mini-
mised by choosing a location where the length of ay is maximised.

Since the vectcr'§3 is dominated in length and direction by its first
component so that ‘

!

FN 2
- o .
a,} = == i Sa
| 31 (BZ) isin (9 4) cos (¢23)I (54)
and an ideal location has phases

= 1.~ (53)
by = @+ D7 o, = an

where m and n are integers.
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Because the first two skew quadrupoles are so close to the IP, and be-
cause the direction of aq is quite fixed, the solution vectors q_ a, and
q, a, are almost totally independent of global lattice parameters. This pre-
serves the high level of lattice flexibility that is one of CESR's virtues.
However, the two vectors cannot be well orthogonalised, and comparatively
large integrated skew gradients of around 1.0 Tesla are necessary. These
fields are produced by mechanical rotation of Ql and G2, through independent
angles of up to + 0.1 radians. At a typical energy of 5.0 GeV the angles
are close to (but not egual to) BCLEC | about 0.05 radians at a solenoid field
of 1.0 Tesla. 2

The third skew guadrupole, placed just outside (11 about 70 metres from
the IP, is comparatively weak, typically about 0.1 Tesla. Built as a cur-
rent sheet magnet, 0.26 metres long, it can be simultaneously used as a steer-
ing magret. Its location is not only advantageous because of the phase con-
ditions 55}, but alsoc because the dispersion coupling, which will now be ana-
lysed in general, is very weak there.

7. Chromatic Effects

Se far, by using a four by four linear matrix analysis, it has been im-
plicitly assumed that all particles have the nominal design energy. A better
apprggimation labels each particle with a constant relative energy error,

§ = ==, and defines the dispersion function, n, by saying that the equilibrium
orbif of a particle is displaced by NS and 1 6.

The conventional solencid-antisolencid compensation scheme is unigue
in decoupling particles of all energies. In general, however, a compensated
insertion will cause off energy particles to perform coupled betatron oscil-
lations about their new equilibrium orbits. Small oscillations can still
be described in a four by four matrix formalism by a linearisation scheme’
if the second order transfer matrices are known. :

Comparisons of compensation schemes on the basis of their 'coupling
chromaticity' could be made in this way, but the process would be quite
tedious, and the results would depend on the distribution of sextupoles.

In practice it is enough to study the analytic behaviour of off energy part-
icles without betatron oscillations.

What is the vertical dispersion fuction 7, , around a machine with a given
compensation scheme? How should couplers be placed to minimise T, and the
vertical emittance?

7.1 Dispersion Coupling

The differential equations for coupled dispersions

Er v - 1
ﬂx &nx Q nZ * an M GI{ (55)

3
+
N

|
]

Q ny T BNy
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are identical to those for coupled betatron oscillaticns

tr

27 - Ra = gk - pyt (57)

except for the horizontal dipole term, G_ = l-, which drives the dispersion
‘oscillations' around the lattice. In tﬁesepequations B stands for solenoid
fields, and Q stands either for skew quadrupole fields or for cylindrically
symmetric sclenoid fringe fields.

If B and Q are even and odd functions sbout an IP, as in most compens-
ation schemes, then, applying periodic boundary conditions to 56),71:‘c and

Nz are respectively even and odd. In a machine with only two crossing points,
like CESR, the important beam-beam condition

*®
nz = (58)

is automatically satisfied at both experiments.

The vertical dispersion solution of $6) is found by breaking up the hori-
zontal dispersion inko a local part,no , and a global part,nb , so that

(39)

The local part is chosen to be zero at the IP, and is propagated through the
insertion region as if all the couplers were turned off. That is,

= it_Kn _—_G
ng =0 Mo o % (60)

Now, using 59) and 60), and taking B Ns to be zero, 56) becomes

b z z (61)

These equations are analogous to coupled betatron oscillaticns 57), with
vertical dipole steering fields Gn_. Assuming that the lattice is decoupled,
the vertical dispersion at a generadl point outside the insertion is then Jjust

n sia (¢_ - Q) n_.
'E';E" - z z Zqi 2L sin )

i sin(=Q) r g 1 (62)
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where the sum is takenm over only one member of each antisymmetrically powered
skew quadrupole pair.

Straight line compensation schemes of any kind do not disturb the vertical
dispersion outside the inserticn, because Ngyis identically zero up to the
first horizontal dipole. Such schemes do not introduce any vertical emittance.

There is always vertical emittance growth at the bends inside the CLED
insertion, due to the non zero vertical dispersion and to the twisting of
the trajectories. However, the main contribution, due to vertical dispersion
outside the insertion, is minimised by choosing a location for the third skew
quad where all three terms in the sum in 62} are small.

Despite lattice variations of n% andn_ g, the local dispersion nNyzat Qll
is consistently less than 0.l metres in magnitude, much less than the peak
n, values of about 3} metres. Typical vertical dispersion waves then have
amplitudes of about 0.02 metres, which is near the limit of experimental
resolution. PETROS1E simulations in a range of CESR lattices predict emit-
tance coupling values, <, of between 3 x 194 and 7 x 10-%.

7.2 A Vertical Emittance Knob

Finally, it is natural in the context of dispersion coupling to describe
a scheme, proposed at CESR, which puts a controlled amount of vertical emit-
tance into the beams.l? Remote skew quadrupoles, at Ql4 and Q29, are excited
and balanced to produce vertical dispersion round the ring without disturbing
any colliding beam parameters except the vertical emittance.

It is quite straightforward in practice to impose the two phase advance
constraints on CESR lattices

- = 7 1T . (63)
x29 ¢Xl4 1 ézzg - ¢Zl~{+ =317

where i and j are integers. Now, if the two (thin) skew guadrupoles in the
east are excited such that

q, + (-DF T g =0 (64)

then their total projection matrix is identically the unit mabrix.

? = I k +
B - (T 980090 (T + a1 Ky )

{63}

I - -
(= Ry ) T+ a Ky ) =1
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Not only are the betatron oscillations at the crossing points exactly de-
coupled, but also there is a total absence of higher order pertubations
like second order tune shifts.

1t is necessary to power the east and west skew guadrupoles antisym-
metrically, not to decouple the whole insertion, but rather to make n*
identically zero. If i is an even number, then according to 56) or 62) the
vertical dispersion waves will be roughly confined between Ql4 and Q29. It
is more convenient for the manufacture of vertical emittance if i is odd,
because then vertical dispersion is made all round the ring.

If skew guadrupoles of strength [ql couple peak horizontal dispersions
Ny into a vertical dispersion wave of amplitude ﬁz around the lattice, then
a very crude estimate of the coupling constant créated is

< !
—= = |q (66)
n

Since a regular quadrupole in a normal cell has a lg! value very close to
2, even comparatively weak skew quadrupoles are strong enough to produce a
useful amount of vertical emittance.
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The west and east projection matrices Py and Pg.
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