Accelerator Division
Alternating Gradient Synchrotron Department
BROOKHAVEN NATIONAL LABORATORY
Associated Universities, Inc.
Upton, New York 11973

Accelerator Division
Technical Note

No. 234

Booster Parameter List

Z. Parsa

January 16, 1986
ABSTRACT

THIS NOTE DESCRIBES THE PARAMETER LIST FOR THE AGS - BOOSTER. A SCHEMATIC LAYOUT OF THE LATTICE AND ITS SUPERPERIODS ARE ALSO INCLUDED.
INTRODUCTION

In this note we describe the parameter list of the AGS - Booster. In section II the present values of the Booster parameters are tabulated. This updates the Booster parameter list given in References 1 and 2. Schematic diagram of the lattice [3,4] showing the layout of the AGS Booster, the labeling convention of the lattice and its superperiods are also included.

References:

AGS BOOSTER PARAMETER LIST

ENERGY [MeV]

INJECTION:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTONS</td>
<td>200 MeV</td>
</tr>
<tr>
<td>POL PROTONS</td>
<td>200 MeV</td>
</tr>
<tr>
<td>HEAVY IONS</td>
<td>> 1 MeV/AMU</td>
</tr>
</tbody>
</table>

[POL == POLARIZED]

EJECTION (MAXIMUM)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTONS</td>
<td>1 GeV</td>
</tr>
<tr>
<td>POL PROTONS</td>
<td>1 GeV</td>
</tr>
<tr>
<td>HEAVY IONS</td>
<td>P = 5 Q/A GeV/AMU</td>
</tr>
</tbody>
</table>

[Q is the charge of the Heavy Ions (whether fully stripped or not) delivered from the Tandem.]

LATTICE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCUMFERENCE</td>
<td>201.78 M (1/4 AGS)</td>
</tr>
<tr>
<td>PERIODICITY</td>
<td>6</td>
</tr>
<tr>
<td>NUMBER OF CELLS</td>
<td>24 FODO</td>
</tr>
<tr>
<td></td>
<td>[SEPARATE FUNCTION, MISSING DIPOLES]</td>
</tr>
<tr>
<td>LENGTH</td>
<td>8.4075 M</td>
</tr>
<tr>
<td>PHASE ADVANCE/CELL</td>
<td>71.25</td>
</tr>
<tr>
<td>QX = QY</td>
<td>4.75</td>
</tr>
<tr>
<td>BETAX MAX/MIN</td>
<td>13.88/3.67 M</td>
</tr>
<tr>
<td>BETAY MAX/MIN</td>
<td>13.67/3.80 M</td>
</tr>
</tbody>
</table>
XP MAX 2.94 M
TRANSITION GAMMA 4.795

RF SYSTEM

NUMBER OF STATIONS
1 FOR PROTONS
1 FOR POL PROTONS
2 FOR HEAVY IONS
[where POL == POLARIZED]

HARMONIC NUMBER
3 FOR PROTONS
3 FOR POL PROTONS
3 FOR HEAVY IONS (1 FOR RHIC)

FREQUENCY RANGE (MHz)
FOR PROTONS 2.5 - 3.9
FOR POL PROTONS 2.5 - 3.9
FOR HEAVY IONS 0.178 - 2.5 (.06 - .84 FOR RHIC)

PEAK RF VOLTAGE [KV]
FOR PROTONS 35
FOR POL PROTONS 35
FOR HEAVY IONS 17

ACCELERATION TIME [M-SEC]
FOR PROTONS 50
FOR POL PROTONS 50
FOR HEAVY IONS 500

REPETITION RATE
FOR PROTONS 10 Hz (4 PULSES/AGS PULSE)
FOR POL PROTONS 1 Hz (1 PULSE/AGS PULSE)
FOR HEAVY IONS 1 Hz (1 PULSE/AGS PULSE)

DIPOLES
[DIPOLES ARE CURVED AND WEDGED FOR 0 ENTRANCE ANGLE]
NUMBER 36
LENGTH (MAGNETIC) 2.4 M
GAP 82.55 MM
GAP VACUUM CHAMBER 66 MM
GOOD FIELD REGION (<10^-4) 16 X 6.6 CM

INJECTION FIELD [KG]
FOR PROTONS 1.56
FOR POL PROTONS 1.56
FOR HEAVY IONS 0.105 A/Q

[EJECTION FIELD [KG]
FOR PROTONS 4.0
FOR POL PROTONS 4.0
FOR HEAVY IONS 12.0
LAMINATION THICKNESS 1.5 MM
[0.6 MM AROUND ENDS]

QUADRUPOLES

NUMBER 48

LENGTH (MAGNETIC) 0.50375 M

APERTURE 16.5 CM

VACUUM CHAMBER AP. 15.5 CM

[AP. == APERTURE]

INJECTION POLE TIP FIELD [KG]

FOR PROTONS 1.02

FOR POL PROTONS 1.02

FOR HEAVY IONS 0.068 A/Q

[Q is the charge of the Heavy Ions, (whether fully stripped or not), delivered from the Tandem.]

EJECTION POLE TIP FIELD [KG]

FOR PROTONS 2.7

FOR POL PROTONS 2.7

FOR HEAVY IONS 7.9

LAMINATION THICKNESS 0.6 MM

FIELD QUALITY

SEXTUPOLE HARMONIC 0.0
(6θ/2θ)

(SHAPE POLE TIP TO ELIMINATE)

ALL OTHER HARMONICS < 10⁻⁴

MAX. VACUUM PRESSURE (N₂ EQU.) 10⁻¹⁰ TORR
MAX. INTENSITY (PARTICLES PER PULSE)

FOR PROTONS \(1 - 1.5 \times 10^{13} \)
FOR POL PROTONS \(10^{12} \)
FOR HEAVY IONS \(2 \times 10^{11} / z \).
Acknowledgement:

We thank E. Courant, and other members of the Booster Design study group for discussions and Ms. K. Brown for our drawings.
Fig. 1 The Booster Lattice